tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" on our website are available for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to buy very strong magnet? Magnetic holders in airtight and durable enclosure are excellent for use in variable and difficult weather conditions, including snow and rain read...

magnets with holders

Magnetic holders can be used to facilitate manufacturing, underwater exploration, or searching for meteorites from gold check...

Shipping is shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships tomorrow

UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder

search holder

Catalog no 210422

GTIN: 5906301814078

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

25 mm

Weight

900 g

Load capacity

365 kg / 3579.43 N

Coating

[NiCuNi] nickel

270.00 with VAT / pcs + price for transport

219.51 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
219.51 ZŁ
270.00 ZŁ
price from 5 pcs
206.34 ZŁ
253.80 ZŁ
price from 15 pcs
193.17 ZŁ
237.60 ZŁ

Hunting for a discount?

Give us a call +48 22 499 98 98 otherwise get in touch using our online form through our site.
Force and structure of a magnet can be verified with our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder

Specification/characteristics UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder
properties
values
Cat. no.
210422
GTIN
5906301814078
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
900 g [±0,1 mm]
Load capacity ~ ?
365 kg / 3579.43 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They do not lose their magnetism, even after approximately ten years – the decrease of strength is only ~1% (based on measurements),
  • They protect against demagnetization induced by surrounding electromagnetic environments very well,
  • The use of a polished gold surface provides a smooth finish,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • With the option for fine forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Key role in cutting-edge sectors – they are utilized in hard drives, rotating machines, medical equipment as well as technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them useful in small systems

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall resistance,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is difficult,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is important in the health of young users. Furthermore, small elements from these products may hinder health screening once in the system,
  • Due to the price of neodymium, their cost is relatively high,

Optimal lifting capacity of a neodymium magnetwhat affects it?

The given lifting capacity of the magnet represents the maximum lifting force, assessed in the best circumstances, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, however under parallel forces the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.

Safety Precautions

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets made of neodymium are fragile and can easily crack as well as shatter.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

 It is important to keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Warning!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98