tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All magnesy neodymowe on our website are in stock for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to purchase strong magnet? Magnet holders in solid and airtight steel enclosure are ideally suited for use in challenging climate conditions, including during rain and snow more...

magnetic holders

Holders with magnets can be used to enhance manufacturing, exploring underwater areas, or finding meteorites made of ore more...

We promise to ship your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder

search holder

Catalog no 210422

GTIN: 5906301814078

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

25 mm

Weight

900 g

Load capacity

365 kg / 3579.43 N

Coating

[NiCuNi] nickel

270.00 with VAT / pcs + price for transport

219.51 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
219.51 ZŁ
270.00 ZŁ
price from 5 pcs
206.34 ZŁ
253.80 ZŁ
price from 15 pcs
193.17 ZŁ
237.60 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 22 499 98 98 if you prefer drop us a message through contact form through our site.
Parameters along with structure of a magnet can be analyzed using our modular calculator.

Order by 14:00 and we’ll ship today!

UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder

Specification/characteristics UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder
properties
values
Cat. no.
210422
GTIN
5906301814078
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
900 g [±0,1 mm]
Load capacity ~ ?
365 kg / 3579.43 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • Thanks to the polished finish and silver coating, they have an aesthetic appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Wide application in new technology industries – they are used in computer drives, rotating machines, diagnostic apparatus and technologically developed systems,
  • Thanks to their power density, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall resistance,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
  • Safety concern from tiny pieces may arise, when consumed by mistake, which is significant in the protection of children. It should also be noted that minuscule fragments from these products have the potential to hinder health screening once in the system,
  • Due to expensive raw materials, their cost is relatively high,

Maximum magnetic pulling forcewhat affects it?

The given holding capacity of the magnet corresponds to the highest holding force, assessed under optimal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Lifting capacity in practice – influencing factors

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed with the use of a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, in contrast under shearing force the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.

Handle with Care: Neodymium Magnets

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Magnets made of neodymium are noted for being fragile, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a significant injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Caution!

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98