tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. All "neodymium magnets" on our website are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy very strong neodymium magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in difficult, demanding climate conditions, including during snow and rain more information...

magnets with holders

Magnetic holders can be used to improve production, underwater exploration, or locating meteors from gold read...

Order is always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships tomorrow

UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder

search holder

Catalog no 210422

GTIN: 5906301814078

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

25 mm

Weight

900 g

Load capacity

365 kg / 3579.43 N

Coating

[NiCuNi] nickel

270.00 with VAT / pcs + price for transport

219.51 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
219.51 ZŁ
270.00 ZŁ
price from 5 pcs
206.34 ZŁ
253.80 ZŁ
price from 15 pcs
193.17 ZŁ
237.60 ZŁ

Want to negotiate?

Give us a call +48 22 499 98 98 if you prefer send us a note using request form the contact form page.
Weight along with form of magnetic components can be analyzed using our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder

Specification/characteristics UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder
properties
values
Cat. no.
210422
GTIN
5906301814078
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
900 g [±0,1 mm]
Load capacity ~ ?
365 kg / 3579.43 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetism, neodymium magnets have these key benefits:

  • They do not lose their even over nearly 10 years – the loss of strength is only ~1% (according to tests),
  • They are highly resistant to demagnetization caused by external magnetic fields,
  • In other words, due to the glossy gold coating, the magnet obtains an aesthetic appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Important function in advanced technical fields – they are utilized in HDDs, electric drives, healthcare devices along with sophisticated instruments,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall strength,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can rust. Therefore, for outdoor applications, it's best to use waterproof types made of non-metallic composites,
  • Limited ability to create threads in the magnet – the use of a external casing is recommended,
  • Health risk due to small fragments may arise, in case of ingestion, which is important in the health of young users. Furthermore, minuscule fragments from these devices may disrupt scanning if inside the body,
  • In cases of tight budgets, neodymium magnet cost is a challenge,

Maximum magnetic pulling forcewhat affects it?

The given holding capacity of the magnet represents the highest holding force, determined in ideal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under shearing force the holding force is lower. In addition, even a minimal clearance {between} the magnet and the plate decreases the holding force.

Handle Neodymium Magnets Carefully

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are highly susceptible to damage, resulting in breaking.

Neodymium magnetic are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Caution!

In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98