tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. All "magnets" on our website are in stock for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in solid and airtight steel casing are perfect for use in variable and difficult weather conditions, including during snow and rain see more...

magnets with holders

Holders with magnets can be used to improve manufacturing, exploring underwater areas, or finding space rocks made of ore more information...

Enjoy delivery of your order on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder

search holder

Catalog no 210422

GTIN: 5906301814078

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

25 mm

Weight

900 g

Load capacity

365 kg / 3579.43 N

Coating

[NiCuNi] nickel

270.00 with VAT / pcs + price for transport

219.51 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
219.51 ZŁ
270.00 ZŁ
price from 5 pcs
206.34 ZŁ
253.80 ZŁ
price from 15 pcs
193.17 ZŁ
237.60 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 888 99 98 98 otherwise drop us a message using form our website.
Lifting power along with form of magnets can be checked using our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder

Specification/characteristics UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder
properties
values
Cat. no.
210422
GTIN
5906301814078
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
900 g [±0,1 mm]
Load capacity ~ ?
365 kg / 3579.43 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

For underwater searches, we recommend UMP 75x25 [M10x3] GW F200 PLATINIUM / N52, which is exceptionally strong and has an impressive magnetic pulling force of approximately ~365 kg. This model is perfect for locating metal objects at the bottom of water bodies.
Magnetic holders are highly effective for searching in water due to their strong attraction capability. UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 weighing 900 grams with a pulling force of ~365 kg is a perfect solution for recovering lost treasures.
When choosing a magnetic holder for water exploration, you should pay attention to the number of Gauss or Tesla value, which determines the attraction strength. UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 has a pulling force of approximately ~365 kg, making it a effective solution for recovering heavier items. Remember that the maximum strength is achieved with the top attachment, while the side attachment offers only 10%-25% of that power.
The sideways force of a magnet is typically lower than the perpendicular force because it depends on the fraction of the magnetic field that interacts with the metal surface. In the case of UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 with a lifting capacity of ~365 kg, maximum power are achieved with the upper holder, while the side attachment offers only 10%-25% of the stated power.
he attraction force was measured under test conditions, using a smooth S235 low-carbon steel plate with a thickness of 10 mm, with the application of lifting force in a perpendicular manner. In a situation where the force acts parallelly, the magnet's attraction force can be 5 times lower! Any gap between the magnet and the plate can cause a reduction in the lifting force.
magnetic pot strength F200 GOLD F300 GOLD

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (based on calculations),
  • They remain magnetized despite exposure to strong external fields,
  • By applying a reflective layer of silver, the element gains a clean look,
  • They have very high magnetic induction on the surface of the magnet,
  • With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for customized forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Key role in advanced technical fields – they are utilized in HDDs, electric drives, diagnostic apparatus as well as high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall strength,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is crucial in the family environments. Furthermore, minuscule fragments from these devices have the potential to interfere with diagnostics after being swallowed,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum lifting capacity of the magnetwhat contributes to it?

The given strength of the magnet represents the optimal strength, measured in the best circumstances, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.

Caution with Neodymium Magnets

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are incredibly delicate, they easily crack as well as can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If the joining of neodymium magnets is not controlled, then they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely strongly.

Safety precautions!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98