tel: +48 22 499 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnets for searching F200 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight and durable steel casing are excellent for use in variable and difficult weather, including during snow and rain see more...

magnets with holders

Magnetic holders can be applied to improve production processes, underwater exploration, or locating meteorites from gold more...

Shipping is always shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder

search holder

Catalog no 210422

GTIN: 5906301814078

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

25 mm

Weight

900 g

Load capacity

365 kg / 3579.43 N

Coating

[NiCuNi] nickel

270.00 with VAT / pcs + price for transport

219.51 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
219.51 ZŁ
270.00 ZŁ
price from 5 pcs
206.34 ZŁ
253.80 ZŁ
price from 15 pcs
193.17 ZŁ
237.60 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 22 499 98 98 alternatively get in touch via form the contact form page.
Weight and appearance of magnets can be tested using our power calculator.

Same-day shipping for orders placed before 14:00.

UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder

Specification/characteristics UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - search holder
properties
values
Cat. no.
210422
GTIN
5906301814078
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
900 g [±0,1 mm]
Load capacity ~ ?
365 kg / 3579.43 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

For underwater searches, we recommend UMP 75x25 [M10x3] GW F200 PLATINIUM / N52, which is very powerful and has an impressive magnetic pulling force of approximately ~365 kg. This model is ideal for retrieving metal objects at the bottom of water bodies.
Magnetic holders are highly effective for retrieving in water due to their high lifting force. UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 weighing 900 grams with a pulling force of ~365 kg is a perfect solution for recovering lost treasures.
When choosing a magnetic holder for water exploration, you should pay attention to the number of Gauss or Tesla value, which determines the attraction strength. UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 has a pulling force of approximately ~365 kg, making it a powerful tool for retrieving objects with significant mass. Remember that the full power is achieved with the upper holder, while the side attachment offers only 10%-25% of that power.
The sideways force of a magnetic holder is typically lower than the perpendicular force because it depends on the fraction of the magnetic field that interacts with the metal surface. In the case of UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 with a lifting capacity of ~365 kg, full capabilities are achieved with the top attachment, while the side holder offers only one-fourth to one-quarter of the stated power.
he attraction force was measured under test conditions, using a smooth S235 low-carbon steel plate with a thickness of 10 mm, with the application of lifting force in a perpendicular manner. In a situation where the sliding occurs, the magnet's lifting capacity can be 5 times lower! Any gap between the magnet and the plate can result in a reduction in the attraction force.
magnetic holder strength F200 GOLD F300 GOLD

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their power is maintained, and after approximately 10 years, it drops only by ~1% (according to research),
  • They are very resistant to demagnetization caused by external magnetic fields,
  • Because of the reflective layer of silver, the component looks visually appealing,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for precise shaping and adjustment to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Key role in modern technologies – they serve a purpose in computer drives, electric drives, clinical machines along with technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in small systems

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to mechanical hits, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall durability,
  • They lose strength at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
  • Possible threat due to small fragments may arise, when consumed by mistake, which is significant in the protection of children. Furthermore, minuscule fragments from these assemblies may hinder health screening when ingested,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given pulling force of the magnet corresponds to the maximum force, determined in a perfect environment, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • at room temperature

What influences lifting capacity in practice

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Neodymium magnets should not be in the vicinity youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Magnets made of neodymium are extremely fragile, resulting in breaking.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets may crack or crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Safety precautions!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98