e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. Practically all magnesy on our website are in stock for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to buy very strong magnet? Holders with magnets in solid and airtight enclosure are perfect for use in difficult weather conditions, including during snow and rain more...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater discoveries, or finding meteorites from gold more...

Shipping is always shipped on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x200 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130291

GTIN: 5906301812845

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

200 mm

Weight

0.01 g

541.20 with VAT / pcs + price for transport

440.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
440.00 ZŁ
541.20 ZŁ
price from 5 pcs
418.00 ZŁ
514.14 ZŁ
price from 10 pcs
396.00 ZŁ
487.08 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 25x200 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x200 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130291
GTIN
5906301812845
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, placed in a casing made of stainless steel mostly AISI304. In this way, it is possible to efficiently remove ferromagnetic particles from different substances. An important element of its operation is the repulsion of magnetic poles N and S, which causes magnetic substances to be targeted. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators serve to segregate ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in the food industry for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rollers are built from acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, are used in metal separation, food production as well as waste processing. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets embedded in a tube of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the stronger the magnet, the better. Nevertheless, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are short. On the other hand, when the magnet is thick, the force lines will be longer and reach further.
For creating the casings of magnetic separators - rollers, usually stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, AISI 316 steel is recommended due to its excellent anti-corrosion properties.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from deposits, avoiding high temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out every two years. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
  • Their ability to resist magnetic interference from external fields is impressive,
  • In other words, due to the shiny gold coating, the magnet obtains an aesthetic appearance,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in modern technologies – they are used in hard drives, rotating machines, clinical machines as well as other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall durability,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing holes directly in the magnet,
  • Possible threat from tiny pieces may arise, when consumed by mistake, which is important in the health of young users. Moreover, tiny components from these devices have the potential to interfere with diagnostics if inside the body,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Exercise Caution with Neodymium Magnets

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Magnets made of neodymium are known for their fragility, which can cause them to become damaged.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Warning!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98