SM 25x200 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130291
GTIN: 5906301812845
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
200 mm
Weight
0.01 g
541.20 ZŁ with VAT / pcs + price for transport
440.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Contact us by phone
+48 22 499 98 98
alternatively drop us a message via
inquiry form
the contact page.
Force along with form of a magnet can be tested with our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
SM 25x200 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- Their magnetic field is maintained, and after around ten years, it drops only by ~1% (according to research),
- Their ability to resist magnetic interference from external fields is impressive,
- The use of a mirror-like silver surface provides a smooth finish,
- Magnetic induction on the surface of these magnets is impressively powerful,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for precise shaping and customization to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
- Important function in modern technologies – they are utilized in data storage devices, electric drives, medical equipment as well as technologically developed systems,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally strengthens its overall strength,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a damp environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of polymer,
- Limited ability to create internal holes in the magnet – the use of a housing is recommended,
- Possible threat linked to microscopic shards may arise, when consumed by mistake, which is notable in the family environments. Furthermore, tiny components from these assemblies can complicate medical imaging after being swallowed,
- In cases of mass production, neodymium magnet cost may not be economically viable,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given pulling force of the magnet corresponds to the maximum force, calculated under optimal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
What influences lifting capacity in practice
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate reduces the load capacity.
Safety Precautions
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnetic are highly susceptible to damage, leading to breaking.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Neodymium magnets will jump and contact together within a radius of several to around 10 cm from each other.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Be careful!
In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.