e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. All "magnets" in our store are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to purchase strong magnet? Magnet holders in airtight and durable steel casing are excellent for use in variable and difficult weather, including snow and rain more...

magnets with holders

Holders with magnets can be used to enhance production, underwater discoveries, or locating meteors made of metal more...

We promise to ship your order on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x200 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130291

GTIN: 5906301812845

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

200 mm

Weight

0.01 g

541.20 with VAT / pcs + price for transport

440.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
440.00 ZŁ
541.20 ZŁ
price from 5 pcs
418.00 ZŁ
514.14 ZŁ
price from 10 pcs
396.00 ZŁ
487.08 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 25x200 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x200 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130291
GTIN
5906301812845
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are placed in a casing made of stainless steel mostly AISI304. Due to this, it is possible to effectively segregate ferromagnetic elements from different substances. An important element of its operation is the repulsion of magnetic poles N and S, which causes magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food sector for the elimination of metallic contaminants, including iron fragments or iron dust. Our rollers are built from acid-resistant steel, AISI 304, suitable for use in food.
Magnetic rollers, otherwise magnetic separators, are employed in metal separation, food production as well as waste processing. They help in eliminating iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with a neodymium magnet placed in a tube of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the greater the magnet's power, the better. Nevertheless, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines will be more compressed. Otherwise, in the case of a thicker magnet, the force lines will be longer and extend over a greater distance.
For creating the casings of magnetic separators - rollers, usually stainless steel is utilized, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel exhibits the best resistance thanks to its outstanding corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other separators that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
By ensuring proper maintenance of neodymium magnetic rollers, you should washing regularly, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements is recommended be carried out once every 24 months. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They do not lose their even over nearly ten years – the loss of power is only ~1% (based on measurements),
  • They remain magnetized despite exposure to magnetic noise,
  • The use of a mirror-like gold surface provides a eye-catching finish,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Significant impact in advanced technical fields – they are utilized in computer drives, rotating machines, healthcare devices as well as high-tech tools,
  • Thanks to their power density, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment. For outdoor use, we recommend using sealed magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing holes directly in the magnet,
  • Health risk due to small fragments may arise, in case of ingestion, which is important in the protection of children. Furthermore, miniature parts from these assemblies have the potential to hinder health screening after being swallowed,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Exercise Caution with Neodymium Magnets

Magnets made of neodymium are delicate as well as can easily break and get damaged.

Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, are able even cut off a finger or there can be a serious pressure or a fracture.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Be careful!

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98