e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" on our website are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for searching F400 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight and durable steel casing are perfect for use in challenging climate conditions, including during rain and snow see...

magnetic holders

Holders with magnets can be applied to improve production processes, underwater discoveries, or finding space rocks from gold see more...

We promise to ship your order on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x200 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130291

GTIN: 5906301812845

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

200 mm

Weight

0.01 g

541.20 with VAT / pcs + price for transport

440.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
440.00 ZŁ
541.20 ZŁ
price from 6 pcs
418.00 ZŁ
514.14 ZŁ
price from 10 pcs
396.00 ZŁ
487.08 ZŁ

Not sure which magnet to buy?

Give us a call +48 22 499 98 98 if you prefer drop us a message using inquiry form the contact form page.
Force along with form of neodymium magnets can be calculated on our power calculator.

Order by 14:00 and we’ll ship today!

SM 25x200 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x200 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130291
GTIN
5906301812845
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. In this way, it is possible to efficiently separate ferromagnetic elements from the mixture. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be targeted. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in food production to clear metallic contaminants, including iron fragments or iron dust. Our rollers are made from acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, are used in food production, metal separation as well as waste processing. They help in removing iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets anchored in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Generally it is believed that the stronger the magnet, the more efficient it is. But, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines are extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, most often stainless steel is used, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel is recommended thanks to its excellent anti-corrosion properties.
Magnetic bars are characterized by their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other separators that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, it is recommended they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can oxidize and lose their power. Testing of the rollers is recommended be carried out every two years. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They do not lose their power around 10 years – the loss of power is only ~1% (theoretically),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • Because of the brilliant layer of gold, the component looks aesthetically refined,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • The ability for accurate shaping or adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Key role in new technology industries – they serve a purpose in HDDs, rotating machines, clinical machines or even technologically developed systems,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to shocks, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time reinforces its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of plastic,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is difficult,
  • Possible threat due to small fragments may arise, especially if swallowed, which is important in the family environments. Moreover, small elements from these assemblies have the potential to hinder health screening once in the system,
  • In cases of tight budgets, neodymium magnet cost may be a barrier,

Precautions with Neodymium Magnets

 Keep neodymium magnets far from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a severe pressure or a fracture.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnets are extremely fragile, leading to shattering.

Magnets made of neodymium are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Exercise caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98