e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all magnesy on our website are in stock for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to buy powerful magnet? Holders with magnets in solid and airtight steel casing are excellent for use in variable and difficult weather conditions, including during rain and snow more information...

magnetic holders

Holders with magnets can be used to enhance manufacturing, underwater exploration, or searching for meteors made of ore more information...

We promise to ship ordered magnets on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x200 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130291

GTIN: 5906301812845

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

200 mm

Weight

0.01 g

541.20 with VAT / pcs + price for transport

440.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
440.00 ZŁ
541.20 ZŁ
price from 10 pcs
396.00 ZŁ
487.08 ZŁ

Want to negotiate?

Call us +48 888 99 98 98 or get in touch by means of contact form the contact page.
Lifting power as well as structure of magnetic components can be analyzed on our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 25x200 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x200 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130291
GTIN
5906301812845
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are embedded in a construction made of stainless steel mostly AISI304. As a result, it is possible to efficiently remove ferromagnetic elements from different substances. A key aspect of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be targeted. The thickness of the magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are used in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are constructed from acid-resistant steel, AISI 304, intended for contact with food.
Magnetic rollers, otherwise magnetic separators, are employed in metal separation, food production as well as waste processing. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers consist of a neodymium magnet placed in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the more effective. But, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are short. By contrast, when the magnet is thick, the force lines will be extended and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel is highly recommended thanks to its outstanding corrosion resistance.
Magnetic bars stand out for their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it is recommended they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They retain their attractive force for almost 10 years – the drop is just ~1% (according to analyses),
  • They protect against demagnetization induced by ambient magnetic influence effectively,
  • Thanks to the polished finish and nickel coating, they have an visually attractive appearance,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Wide application in cutting-edge sectors – they find application in computer drives, rotating machines, medical equipment along with other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them useful in compact constructions

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage while also enhances its overall strength,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
  • Potential hazard due to small fragments may arise, when consumed by mistake, which is important in the health of young users. It should also be noted that tiny components from these assemblies may hinder health screening if inside the body,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum holding power of the magnet – what it depends on?

The given pulling force of the magnet represents the maximum force, calculated under optimal conditions, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, however under parallel forces the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are highly susceptible to damage, leading to their cracking.

Neodymium magnets are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets jump and touch each other mutually within a radius of several to almost 10 cm from each other.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Safety precautions!

To illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98