tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. Practically all "magnets" on our website are available for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy strong magnet? Holders with magnets in solid and airtight steel casing are perfect for use in challenging weather, including snow and rain see...

magnetic holders

Holders with magnets can be used to enhance production processes, exploring underwater areas, or locating space rocks made of metal check...

Shipping is shipped if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 - search holder

search holder

Catalog no 210433

GTIN: 5906301814085

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

25 mm

Weight

900 g

Load capacity

310 kg / 3040.06 N

Coating

[NiCuNi] nickel

200.00 with VAT / pcs + price for transport

162.60 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
162.60 ZŁ
200.00 ZŁ
price from 10 pcs
152.84 ZŁ
187.99 ZŁ
price from 20 pcs
143.09 ZŁ
176.00 ZŁ

Hunting for a discount?

Call us now +48 22 499 98 98 alternatively contact us using form the contact form page.
Strength as well as shape of neodymium magnets can be analyzed on our force calculator.

Same-day processing for orders placed before 14:00.

UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 - search holder

Specification/characteristics UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 - search holder
properties
values
Cat. no.
210433
GTIN
5906301814085
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
900 g [±0,1 mm]
Load capacity ~ ?
310 kg / 3040.06 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

For underwater searches, we recommend UMP 75x25 [M10x3] GW F200 GOLD Lina / N42, which is exceptionally strong and has an impressive magnetic pulling force of approximately ~310 kg. This model is ideal for retrieving metal objects at the bottom of water bodies.
Magnetic holders are highly effective for searching in water environments due to their strong attraction capability. UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 weighing 900 grams with a pulling force of ~310 kg is a perfect solution for recovering metallic findings.
When choosing a magnet for water exploration, you should pay attention to the number of Gauss or Tesla value, which determines the attraction strength. UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 has a pulling force of approximately ~310 kg, making it a effective solution for retrieving heavier items. Remember that the full power is achieved with the top attachment, while the side attachment offers only 10%-25% of that power.
The sliding force of a magnetic holder is typically lower than the perpendicular force because it depends on the fraction of the magnetic field that interacts with the metal surface. In the case of UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 with a lifting capacity of ~310 kg, maximum power are achieved with the upper holder, while the side holder offers only 10%-25% of the declared force.
he Lifting force was measured under laboratory conditions, using a smooth S235 low-carbon steel plate with a thickness of 10 mm, with the application of lifting force in a perpendicular manner. In a situation where the sliding occurs, the magnet's attraction force can be 5 times lower! Any gap between the magnet and the plate can result in a reduction in the attraction force.
magnetic pot strength F200 GOLD F300 GOLD

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional field intensity, neodymium magnets offer the following advantages:

  • They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They are very resistant to demagnetization caused by external magnetic fields,
  • Thanks to the glossy finish and gold coating, they have an visually attractive appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for customized forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Significant impact in modern technologies – they find application in HDDs, electric drives, diagnostic apparatus along with sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and enhances its overall durability,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can corrode. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is notable in the protection of children. Furthermore, tiny components from these devices can disrupt scanning once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Highest magnetic holding forcewhat contributes to it?

The given pulling force of the magnet means the maximum force, measured in a perfect environment, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

Determinants of practical lifting force of a magnet

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the holding force is lower. Additionally, even a small distance {between} the magnet and the plate decreases the load capacity.

Caution with Neodymium Magnets

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

 Keep neodymium magnets far from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnetic are fragile and can easily crack as well as shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Warning!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98