tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our offer. Practically all magnesy on our website are available for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight and durable steel casing are ideally suited for use in challenging weather conditions, including in the rain and snow read...

magnets with holders

Magnetic holders can be applied to improve production processes, underwater discoveries, or finding meteorites made of ore read...

Enjoy delivery of your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 135x40 [M10+M12] GW F 600 kg / N38 - search holder

search holder

Catalog no 210339

GTIN: 5906301813989

5

Diameter Ø [±0,1 mm]

135 mm

Height [±0,1 mm]

40 mm

Weight

4300 g

Load capacity

680 kg / 6668.52 N

Coating

[NiCuNi] nickel

599.99 with VAT / pcs + price for transport

487.80 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
487.80 ZŁ
599.99 ZŁ
price from 5 pcs
458.53 ZŁ
563.99 ZŁ
price from 10 pcs
429.26 ZŁ
527.99 ZŁ

Do you have doubts?

Call us +48 888 99 98 98 alternatively let us know through request form the contact page.
Weight as well as appearance of a neodymium magnet can be verified using our modular calculator.

Order by 14:00 and we’ll ship today!

UMP 135x40 [M10+M12] GW F 600 kg / N38 - search holder

Specification/characteristics UMP 135x40 [M10+M12] GW F 600 kg / N38 - search holder
properties
values
Cat. no.
210339
GTIN
5906301813989
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
135 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
4300 g [±0,1 mm]
Load capacity ~ ?
680 kg / 6668.52 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

For exploring rivers and lakes, we recommend UMP 135x40 [M10+M12] GW F 600 kg / N38, which is exceptionally strong and has an impressive magnetic pulling force of approximately ~680 kg. This model is perfect for retrieving metal objects at the bottom of water bodies.
Magnetic holders are highly effective for retrieving in water environments due to their strong attraction capability. UMP 135x40 [M10+M12] GW F 600 kg / N38 weighing 4300 grams with a pulling force of ~680 kg is a perfect solution for finding lost treasures.
When choosing a magnetic holder for underwater searches, you should pay attention to the number of Gauss or Tesla value, which determines the attraction strength. UMP 135x40 [M10+M12] GW F 600 kg / N38 has a pulling force of approximately ~680 kg, making it a effective solution for retrieving objects with significant mass. Remember that the full power is achieved with the top attachment, while the side attachment offers only 10%-25% of that power.
The sideways force of a magnet is typically lower than the perpendicular force because it depends on the fraction of the magnetic field that interacts with the metal surface. In the case of UMP 135x40 [M10+M12] GW F 600 kg / N38 with a lifting capacity of ~680 kg, maximum power are achieved with the upper holder, while the side holder offers only 10%-25% of the stated power.
he attraction force was measured under test conditions, using a smooth S235 low-carbon steel plate with a thickness of 10 mm, with the application of lifting force in a perpendicular manner. In a situation where the force acts parallelly, the magnet's attraction force can be five times lower! Any gap between the magnet and the plate can cause a reduction in the attraction force.
magnetic pot strength F200 GOLD F300 GOLD

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They do not lose their even during around 10 years – the decrease of power is only ~1% (according to tests),
  • They are very resistant to demagnetization caused by external magnetic fields,
  • In other words, due to the metallic gold coating, the magnet obtains an professional appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Wide application in cutting-edge sectors – they are used in HDDs, electromechanical systems, healthcare devices and technologically developed systems,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and increases its overall resistance,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment, especially when used outside, we recommend using sealed magnets, such as those made of rubber,
  • Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
  • Safety concern linked to microscopic shards may arise, when consumed by mistake, which is notable in the protection of children. Furthermore, minuscule fragments from these magnets may interfere with diagnostics when ingested,
  • Due to a complex production process, their cost is above average,

Optimal lifting capacity of a neodymium magnetwhat affects it?

The given strength of the magnet means the optimal strength, measured under optimal conditions, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Determinants of lifting force in real conditions

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular detachment force, however under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.

Handle Neodymium Magnets with Caution

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are extremely delicate, they easily break as well as can crumble.

Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will jump and contact together within a distance of several to almost 10 cm from each other.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Safety rules!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98