MW 15x5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010031
GTIN/EAN: 5906301810308
Diameter Ø
15 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
6.63 g
Magnetization Direction
↑ axial
Load capacity
5.39 kg / 52.83 N
Magnetic Induction
343.70 mT / 3437 Gs
Coating
[NiCuNi] Nickel
3.20 ZŁ with VAT / pcs + price for transport
2.60 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
if you prefer contact us by means of
contact form
through our site.
Specifications and appearance of a magnet can be verified with our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
Detailed specification - MW 15x5 / N38 - cylindrical magnet
Specification / characteristics - MW 15x5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010031 |
| GTIN/EAN | 5906301810308 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 15 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 6.63 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 5.39 kg / 52.83 N |
| Magnetic Induction ~ ? | 343.70 mT / 3437 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the product - report
These information are the direct effect of a engineering calculation. Results rely on algorithms for the material Nd2Fe14B. Real-world performance might slightly differ. Use these calculations as a reference point during assembly planning.
Table 1: Static pull force (pull vs gap) - characteristics
MW 15x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3436 Gs
343.6 mT
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
strong |
| 1 mm |
3054 Gs
305.4 mT
|
4.26 kg / 9.39 lbs
4258.2 g / 41.8 N
|
strong |
| 2 mm |
2633 Gs
263.3 mT
|
3.17 kg / 6.98 lbs
3165.4 g / 31.1 N
|
strong |
| 3 mm |
2221 Gs
222.1 mT
|
2.25 kg / 4.96 lbs
2251.5 g / 22.1 N
|
strong |
| 5 mm |
1521 Gs
152.1 mT
|
1.06 kg / 2.33 lbs
1056.2 g / 10.4 N
|
low risk |
| 10 mm |
585 Gs
58.5 mT
|
0.16 kg / 0.35 lbs
156.5 g / 1.5 N
|
low risk |
| 15 mm |
260 Gs
26.0 mT
|
0.03 kg / 0.07 lbs
30.8 g / 0.3 N
|
low risk |
| 20 mm |
133 Gs
13.3 mT
|
0.01 kg / 0.02 lbs
8.1 g / 0.1 N
|
low risk |
| 30 mm |
47 Gs
4.7 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
low risk |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
low risk |
Table 2: Shear force (vertical surface)
MW 15x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.08 kg / 2.38 lbs
1078.0 g / 10.6 N
|
| 1 mm | Stal (~0.2) |
0.85 kg / 1.88 lbs
852.0 g / 8.4 N
|
| 2 mm | Stal (~0.2) |
0.63 kg / 1.40 lbs
634.0 g / 6.2 N
|
| 3 mm | Stal (~0.2) |
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.47 lbs
212.0 g / 2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MW 15x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.62 kg / 3.56 lbs
1617.0 g / 15.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.08 kg / 2.38 lbs
1078.0 g / 10.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.54 kg / 1.19 lbs
539.0 g / 5.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
2.70 kg / 5.94 lbs
2695.0 g / 26.4 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 15x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.54 kg / 1.19 lbs
539.0 g / 5.3 N
|
| 1 mm |
|
1.35 kg / 2.97 lbs
1347.5 g / 13.2 N
|
| 2 mm |
|
2.70 kg / 5.94 lbs
2695.0 g / 26.4 N
|
| 3 mm |
|
4.04 kg / 8.91 lbs
4042.5 g / 39.7 N
|
| 5 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
| 10 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
| 11 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
| 12 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
Table 5: Thermal stability (stability) - thermal limit
MW 15x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
OK |
| 40 °C | -2.2% |
5.27 kg / 11.62 lbs
5271.4 g / 51.7 N
|
OK |
| 60 °C | -4.4% |
5.15 kg / 11.36 lbs
5152.8 g / 50.5 N
|
|
| 80 °C | -6.6% |
5.03 kg / 11.10 lbs
5034.3 g / 49.4 N
|
|
| 100 °C | -28.8% |
3.84 kg / 8.46 lbs
3837.7 g / 37.6 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MW 15x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.86 kg / 28.35 lbs
4 954 Gs
|
1.93 kg / 4.25 lbs
1929 g / 18.9 N
|
N/A |
| 1 mm |
11.54 kg / 25.43 lbs
6 508 Gs
|
1.73 kg / 3.81 lbs
1730 g / 17.0 N
|
10.38 kg / 22.89 lbs
~0 Gs
|
| 2 mm |
10.16 kg / 22.40 lbs
6 107 Gs
|
1.52 kg / 3.36 lbs
1524 g / 14.9 N
|
9.14 kg / 20.16 lbs
~0 Gs
|
| 3 mm |
8.82 kg / 19.44 lbs
5 689 Gs
|
1.32 kg / 2.92 lbs
1322 g / 13.0 N
|
7.93 kg / 17.49 lbs
~0 Gs
|
| 5 mm |
6.40 kg / 14.11 lbs
4 847 Gs
|
0.96 kg / 2.12 lbs
960 g / 9.4 N
|
5.76 kg / 12.70 lbs
~0 Gs
|
| 10 mm |
2.52 kg / 5.56 lbs
3 042 Gs
|
0.38 kg / 0.83 lbs
378 g / 3.7 N
|
2.27 kg / 5.00 lbs
~0 Gs
|
| 20 mm |
0.37 kg / 0.82 lbs
1 171 Gs
|
0.06 kg / 0.12 lbs
56 g / 0.5 N
|
0.34 kg / 0.74 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
153 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
95 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MW 15x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 7.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 4.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 3.5 cm |
| Remote | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (kinetic energy) - warning
MW 15x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
29.27 km/h
(8.13 m/s)
|
0.22 J | |
| 30 mm |
49.81 km/h
(13.84 m/s)
|
0.63 J | |
| 50 mm |
64.30 km/h
(17.86 m/s)
|
1.06 J | |
| 100 mm |
90.93 km/h
(25.26 m/s)
|
2.12 J |
Table 9: Surface protection spec
MW 15x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 15x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 6 428 Mx | 64.3 µWb |
| Pc Coefficient | 0.44 | Low (Flat) |
Table 11: Physics of underwater searching
MW 15x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 5.39 kg | Standard |
| Water (riverbed) |
6.17 kg
(+0.78 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Note: On a vertical surface, the magnet retains only approx. 20-30% of its nominal pull.
2. Plate thickness effect
*Thin steel (e.g. 0.5mm PC case) significantly limits the holding force.
3. Heat tolerance
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.44
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also deals
Strengths as well as weaknesses of Nd2Fe14B magnets.
Strengths
- Their magnetic field is durable, and after around ten years it decreases only by ~1% (according to research),
- Neodymium magnets prove to be extremely resistant to loss of magnetic properties caused by external field sources,
- Thanks to the glossy finish, the layer of nickel, gold-plated, or silver-plated gives an visually attractive appearance,
- Neodymium magnets ensure maximum magnetic induction on a contact point, which ensures high operational effectiveness,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Thanks to modularity in shaping and the capacity to customize to complex applications,
- Versatile presence in advanced technology sectors – they serve a role in data components, brushless drives, advanced medical instruments, and complex engineering applications.
- Thanks to efficiency per cm³, small magnets offer high operating force, in miniature format,
Cons
- Brittleness is one of their disadvantages. Upon intense impact they can break. We recommend keeping them in a special holder, which not only secures them against impacts but also increases their durability
- Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of strength (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
- Magnets exposed to a humid environment can rust. Therefore while using outdoors, we recommend using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Limited ability of producing nuts in the magnet and complex shapes - recommended is a housing - magnet mounting.
- Potential hazard related to microscopic parts of magnets can be dangerous, when accidentally swallowed, which is particularly important in the context of child safety. Additionally, small components of these products can be problematic in diagnostics medical after entering the body.
- Higher cost of purchase is a significant factor to consider compared to ceramic magnets, especially in budget applications
Lifting parameters
Best holding force of the magnet in ideal parameters – what it depends on?
- using a plate made of high-permeability steel, functioning as a magnetic yoke
- possessing a massiveness of at least 10 mm to avoid saturation
- with an polished touching surface
- under conditions of gap-free contact (surface-to-surface)
- under perpendicular application of breakaway force (90-degree angle)
- at standard ambient temperature
Determinants of practical lifting force of a magnet
- Distance – existence of any layer (rust, tape, gap) acts as an insulator, which reduces power steeply (even by 50% at 0.5 mm).
- Direction of force – highest force is obtained only during pulling at a 90° angle. The shear force of the magnet along the surface is usually several times smaller (approx. 1/5 of the lifting capacity).
- Plate thickness – too thin steel does not close the flux, causing part of the power to be lost to the other side.
- Steel grade – the best choice is pure iron steel. Cast iron may generate lower lifting capacity.
- Base smoothness – the smoother and more polished the surface, the better the adhesion and stronger the hold. Unevenness creates an air distance.
- Thermal environment – heating the magnet causes a temporary drop of force. It is worth remembering the maximum operating temperature for a given model.
Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the holding force is lower. In addition, even a small distance between the magnet and the plate decreases the holding force.
Safety rules for work with neodymium magnets
Threat to navigation
A strong magnetic field negatively affects the operation of compasses in phones and navigation systems. Maintain magnets near a smartphone to prevent breaking the sensors.
Life threat
Medical warning: Strong magnets can turn off pacemakers and defibrillators. Do not approach if you have medical devices.
Machining danger
Dust produced during cutting of magnets is self-igniting. Do not drill into magnets without proper cooling and knowledge.
Magnet fragility
Beware of splinters. Magnets can explode upon uncontrolled impact, launching sharp fragments into the air. Wear goggles.
Crushing force
Large magnets can break fingers instantly. Under no circumstances put your hand betwixt two strong magnets.
Electronic hazard
Powerful magnetic fields can corrupt files on credit cards, hard drives, and other magnetic media. Keep a distance of at least 10 cm.
Do not give to children
These products are not intended for children. Swallowing multiple magnets can lead to them connecting inside the digestive tract, which constitutes a direct threat to life and requires urgent medical intervention.
Respect the power
Exercise caution. Rare earth magnets attract from a distance and connect with massive power, often quicker than you can react.
Power loss in heat
Monitor thermal conditions. Exposing the magnet above 80 degrees Celsius will permanently weaken its magnetic structure and strength.
Warning for allergy sufferers
A percentage of the population experience a hypersensitivity to nickel, which is the typical protective layer for neodymium magnets. Frequent touching might lead to skin redness. We suggest use safety gloves.
