MPL 40x20x10 / N38 - lamellar magnet
lamellar magnet
Catalog no 020158
GTIN/EAN: 5906301811640
length
40 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
60 g
Magnetization Direction
↑ axial
Load capacity
24.62 kg / 241.53 N
Magnetic Induction
349.60 mT / 3496 Gs
Coating
[NiCuNi] Nickel
31.00 ZŁ with VAT / pcs + price for transport
25.20 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 22 499 98 98
alternatively drop us a message through
inquiry form
our website.
Force and structure of neodymium magnets can be tested using our
our magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
Product card - MPL 40x20x10 / N38 - lamellar magnet
Specification / characteristics - MPL 40x20x10 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020158 |
| GTIN/EAN | 5906301811640 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 20 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 60 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 24.62 kg / 241.53 N |
| Magnetic Induction ~ ? | 349.60 mT / 3496 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the product - technical parameters
The following values constitute the outcome of a mathematical analysis. Results are based on models for the material Nd2Fe14B. Actual parameters may deviate from the simulation results. Please consider these calculations as a supplementary guide for designers.
Table 1: Static force (force vs gap) - interaction chart
MPL 40x20x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3495 Gs
349.5 mT
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
crushing |
| 1 mm |
3272 Gs
327.2 mT
|
21.58 kg / 47.57 lbs
21578.0 g / 211.7 N
|
crushing |
| 2 mm |
3035 Gs
303.5 mT
|
18.56 kg / 40.92 lbs
18559.3 g / 182.1 N
|
crushing |
| 3 mm |
2794 Gs
279.4 mT
|
15.73 kg / 34.69 lbs
15733.0 g / 154.3 N
|
crushing |
| 5 mm |
2332 Gs
233.2 mT
|
10.96 kg / 24.16 lbs
10959.2 g / 107.5 N
|
crushing |
| 10 mm |
1433 Gs
143.3 mT
|
4.14 kg / 9.12 lbs
4136.4 g / 40.6 N
|
medium risk |
| 15 mm |
891 Gs
89.1 mT
|
1.60 kg / 3.52 lbs
1598.7 g / 15.7 N
|
weak grip |
| 20 mm |
574 Gs
57.4 mT
|
0.66 kg / 1.46 lbs
664.0 g / 6.5 N
|
weak grip |
| 30 mm |
267 Gs
26.7 mT
|
0.14 kg / 0.32 lbs
143.7 g / 1.4 N
|
weak grip |
| 50 mm |
82 Gs
8.2 mT
|
0.01 kg / 0.03 lbs
13.7 g / 0.1 N
|
weak grip |
Table 2: Shear load (wall)
MPL 40x20x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.92 kg / 10.86 lbs
4924.0 g / 48.3 N
|
| 1 mm | Stal (~0.2) |
4.32 kg / 9.52 lbs
4316.0 g / 42.3 N
|
| 2 mm | Stal (~0.2) |
3.71 kg / 8.18 lbs
3712.0 g / 36.4 N
|
| 3 mm | Stal (~0.2) |
3.15 kg / 6.94 lbs
3146.0 g / 30.9 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 4.83 lbs
2192.0 g / 21.5 N
|
| 10 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| 15 mm | Stal (~0.2) |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 20 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
132.0 g / 1.3 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MPL 40x20x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
7.39 kg / 16.28 lbs
7386.0 g / 72.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.92 kg / 10.86 lbs
4924.0 g / 48.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
2.46 kg / 5.43 lbs
2462.0 g / 24.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
12.31 kg / 27.14 lbs
12310.0 g / 120.8 N
|
Table 4: Material efficiency (saturation) - power losses
MPL 40x20x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.23 kg / 2.71 lbs
1231.0 g / 12.1 N
|
| 1 mm |
|
3.08 kg / 6.78 lbs
3077.5 g / 30.2 N
|
| 2 mm |
|
6.16 kg / 13.57 lbs
6155.0 g / 60.4 N
|
| 3 mm |
|
9.23 kg / 20.35 lbs
9232.5 g / 90.6 N
|
| 5 mm |
|
15.39 kg / 33.92 lbs
15387.5 g / 151.0 N
|
| 10 mm |
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
| 11 mm |
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
| 12 mm |
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
Table 5: Thermal resistance (material behavior) - thermal limit
MPL 40x20x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
OK |
| 40 °C | -2.2% |
24.08 kg / 53.08 lbs
24078.4 g / 236.2 N
|
OK |
| 60 °C | -4.4% |
23.54 kg / 51.89 lbs
23536.7 g / 230.9 N
|
|
| 80 °C | -6.6% |
23.00 kg / 50.70 lbs
22995.1 g / 225.6 N
|
|
| 100 °C | -28.8% |
17.53 kg / 38.65 lbs
17529.4 g / 172.0 N
|
Table 6: Two magnets (repulsion) - forces in the system
MPL 40x20x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
60.25 kg / 132.83 lbs
4 926 Gs
|
9.04 kg / 19.93 lbs
9038 g / 88.7 N
|
N/A |
| 1 mm |
56.58 kg / 124.73 lbs
6 774 Gs
|
8.49 kg / 18.71 lbs
8487 g / 83.3 N
|
50.92 kg / 112.26 lbs
~0 Gs
|
| 2 mm |
52.81 kg / 116.42 lbs
6 544 Gs
|
7.92 kg / 17.46 lbs
7921 g / 77.7 N
|
47.53 kg / 104.78 lbs
~0 Gs
|
| 3 mm |
49.07 kg / 108.19 lbs
6 309 Gs
|
7.36 kg / 16.23 lbs
7361 g / 72.2 N
|
44.17 kg / 97.37 lbs
~0 Gs
|
| 5 mm |
41.89 kg / 92.34 lbs
5 828 Gs
|
6.28 kg / 13.85 lbs
6283 g / 61.6 N
|
37.70 kg / 83.11 lbs
~0 Gs
|
| 10 mm |
26.82 kg / 59.13 lbs
4 664 Gs
|
4.02 kg / 8.87 lbs
4023 g / 39.5 N
|
24.14 kg / 53.22 lbs
~0 Gs
|
| 20 mm |
10.12 kg / 22.32 lbs
2 865 Gs
|
1.52 kg / 3.35 lbs
1518 g / 14.9 N
|
9.11 kg / 20.09 lbs
~0 Gs
|
| 50 mm |
0.73 kg / 1.61 lbs
769 Gs
|
0.11 kg / 0.24 lbs
109 g / 1.1 N
|
0.66 kg / 1.45 lbs
~0 Gs
|
| 60 mm |
0.35 kg / 0.78 lbs
534 Gs
|
0.05 kg / 0.12 lbs
53 g / 0.5 N
|
0.32 kg / 0.70 lbs
~0 Gs
|
| 70 mm |
0.18 kg / 0.40 lbs
383 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.36 lbs
~0 Gs
|
| 80 mm |
0.10 kg / 0.22 lbs
282 Gs
|
0.01 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 90 mm |
0.06 kg / 0.12 lbs
214 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
165 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
Table 7: Protective zones (implants) - precautionary measures
MPL 40x20x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 14.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 11.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 9.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 7.0 cm |
| Remote | 50 Gs (5.0 mT) | 6.5 cm |
| Payment card | 400 Gs (40.0 mT) | 2.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.0 cm |
Table 8: Dynamics (kinetic energy) - warning
MPL 40x20x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.47 km/h
(6.24 m/s)
|
1.17 J | |
| 30 mm |
35.51 km/h
(9.86 m/s)
|
2.92 J | |
| 50 mm |
45.70 km/h
(12.69 m/s)
|
4.83 J | |
| 100 mm |
64.60 km/h
(17.95 m/s)
|
9.66 J |
Table 9: Surface protection spec
MPL 40x20x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 40x20x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 28 125 Mx | 281.2 µWb |
| Pc Coefficient | 0.42 | Low (Flat) |
Table 11: Submerged application
MPL 40x20x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 24.62 kg | Standard |
| Water (riverbed) |
28.19 kg
(+3.57 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical wall, the magnet retains merely a fraction of its perpendicular strength.
2. Steel saturation
*Thin metal sheet (e.g. 0.5mm PC case) drastically reduces the holding force.
3. Heat tolerance
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.42
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Strengths as well as weaknesses of Nd2Fe14B magnets.
Benefits
- They have unchanged lifting capacity, and over more than 10 years their attraction force decreases symbolically – ~1% (according to theory),
- Neodymium magnets are characterized by highly resistant to magnetic field loss caused by external magnetic fields,
- In other words, due to the glossy finish of nickel, the element is aesthetically pleasing,
- Magnetic induction on the surface of the magnet turns out to be extremely intense,
- Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
- Considering the ability of precise molding and adaptation to unique needs, neodymium magnets can be produced in a wide range of shapes and sizes, which makes them more universal,
- Universal use in advanced technology sectors – they are commonly used in computer drives, motor assemblies, diagnostic systems, as well as complex engineering applications.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in tiny dimensions, which allows their use in small systems
Disadvantages
- To avoid cracks under impact, we recommend using special steel holders. Such a solution protects the magnet and simultaneously improves its durability.
- Neodymium magnets decrease their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which prevent oxidation and corrosion.
- Due to limitations in realizing threads and complicated forms in magnets, we propose using casing - magnetic holder.
- Possible danger resulting from small fragments of magnets are risky, in case of ingestion, which is particularly important in the context of child health protection. Furthermore, small elements of these products are able to disrupt the diagnostic process medical when they are in the body.
- Higher cost of purchase is a significant factor to consider compared to ceramic magnets, especially in budget applications
Pull force analysis
Magnetic strength at its maximum – what it depends on?
- with the use of a yoke made of special test steel, ensuring maximum field concentration
- whose transverse dimension reaches at least 10 mm
- with a surface perfectly flat
- without the slightest air gap between the magnet and steel
- under vertical application of breakaway force (90-degree angle)
- in neutral thermal conditions
Lifting capacity in practice – influencing factors
- Clearance – existence of foreign body (paint, tape, gap) acts as an insulator, which reduces capacity rapidly (even by 50% at 0.5 mm).
- Angle of force application – highest force is obtained only during perpendicular pulling. The resistance to sliding of the magnet along the plate is usually several times smaller (approx. 1/5 of the lifting capacity).
- Plate thickness – insufficiently thick sheet does not close the flux, causing part of the flux to be escaped into the air.
- Metal type – not every steel reacts the same. High carbon content weaken the interaction with the magnet.
- Smoothness – ideal contact is possible only on smooth steel. Any scratches and bumps create air cushions, weakening the magnet.
- Thermal factor – hot environment reduces magnetic field. Exceeding the limit temperature can permanently damage the magnet.
Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the lifting capacity is smaller. In addition, even a slight gap between the magnet and the plate reduces the holding force.
Warnings
Allergic reactions
It is widely known that the nickel plating (the usual finish) is a potent allergen. If you have an allergy, avoid touching magnets with bare hands or choose versions in plastic housing.
Data carriers
Device Safety: Neodymium magnets can ruin data carriers and sensitive devices (pacemakers, hearing aids, timepieces).
Choking Hazard
Absolutely keep magnets away from children. Choking hazard is significant, and the consequences of magnets connecting inside the body are very dangerous.
Heat sensitivity
Monitor thermal conditions. Heating the magnet to high heat will destroy its properties and pulling force.
Do not drill into magnets
Drilling and cutting of neodymium magnets carries a risk of fire hazard. Neodymium dust reacts violently with oxygen and is hard to extinguish.
Precision electronics
Be aware: neodymium magnets produce a field that confuses precision electronics. Keep a safe distance from your mobile, device, and navigation systems.
Magnets are brittle
NdFeB magnets are sintered ceramics, meaning they are very brittle. Collision of two magnets leads to them cracking into shards.
Safe operation
Use magnets consciously. Their huge power can surprise even professionals. Stay alert and respect their power.
Crushing risk
Big blocks can crush fingers instantly. Do not put your hand betwixt two attracting surfaces.
Medical interference
Warning for patients: Strong magnetic fields affect medical devices. Keep minimum 30 cm distance or ask another person to work with the magnets.
