MPL 40x20x10 / N38 - lamellar magnet
lamellar magnet
Catalog no 020158
GTIN/EAN: 5906301811640
length
40 mm [±0,1 mm]
Width
20 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
60 g
Magnetization Direction
↑ axial
Load capacity
24.62 kg / 241.53 N
Magnetic Induction
349.60 mT / 3496 Gs
Coating
[NiCuNi] Nickel
31.00 ZŁ with VAT / pcs + price for transport
25.20 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
alternatively drop us a message by means of
form
through our site.
Strength along with structure of a neodymium magnet can be reviewed on our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
Technical - MPL 40x20x10 / N38 - lamellar magnet
Specification / characteristics - MPL 40x20x10 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020158 |
| GTIN/EAN | 5906301811640 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 40 mm [±0,1 mm] |
| Width | 20 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 60 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 24.62 kg / 241.53 N |
| Magnetic Induction ~ ? | 349.60 mT / 3496 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the magnet - technical parameters
Presented data represent the direct effect of a physical analysis. Results are based on models for the material Nd2Fe14B. Actual parameters might slightly differ. Treat these data as a preliminary roadmap for designers.
Table 1: Static pull force (pull vs distance) - interaction chart
MPL 40x20x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3495 Gs
349.5 mT
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
crushing |
| 1 mm |
3272 Gs
327.2 mT
|
21.58 kg / 47.57 lbs
21578.0 g / 211.7 N
|
crushing |
| 2 mm |
3035 Gs
303.5 mT
|
18.56 kg / 40.92 lbs
18559.3 g / 182.1 N
|
crushing |
| 3 mm |
2794 Gs
279.4 mT
|
15.73 kg / 34.69 lbs
15733.0 g / 154.3 N
|
crushing |
| 5 mm |
2332 Gs
233.2 mT
|
10.96 kg / 24.16 lbs
10959.2 g / 107.5 N
|
crushing |
| 10 mm |
1433 Gs
143.3 mT
|
4.14 kg / 9.12 lbs
4136.4 g / 40.6 N
|
strong |
| 15 mm |
891 Gs
89.1 mT
|
1.60 kg / 3.52 lbs
1598.7 g / 15.7 N
|
weak grip |
| 20 mm |
574 Gs
57.4 mT
|
0.66 kg / 1.46 lbs
664.0 g / 6.5 N
|
weak grip |
| 30 mm |
267 Gs
26.7 mT
|
0.14 kg / 0.32 lbs
143.7 g / 1.4 N
|
weak grip |
| 50 mm |
82 Gs
8.2 mT
|
0.01 kg / 0.03 lbs
13.7 g / 0.1 N
|
weak grip |
Table 2: Slippage load (vertical surface)
MPL 40x20x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.92 kg / 10.86 lbs
4924.0 g / 48.3 N
|
| 1 mm | Stal (~0.2) |
4.32 kg / 9.52 lbs
4316.0 g / 42.3 N
|
| 2 mm | Stal (~0.2) |
3.71 kg / 8.18 lbs
3712.0 g / 36.4 N
|
| 3 mm | Stal (~0.2) |
3.15 kg / 6.94 lbs
3146.0 g / 30.9 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 4.83 lbs
2192.0 g / 21.5 N
|
| 10 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| 15 mm | Stal (~0.2) |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 20 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
132.0 g / 1.3 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MPL 40x20x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
7.39 kg / 16.28 lbs
7386.0 g / 72.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.92 kg / 10.86 lbs
4924.0 g / 48.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
2.46 kg / 5.43 lbs
2462.0 g / 24.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
12.31 kg / 27.14 lbs
12310.0 g / 120.8 N
|
Table 4: Steel thickness (saturation) - power losses
MPL 40x20x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.23 kg / 2.71 lbs
1231.0 g / 12.1 N
|
| 1 mm |
|
3.08 kg / 6.78 lbs
3077.5 g / 30.2 N
|
| 2 mm |
|
6.16 kg / 13.57 lbs
6155.0 g / 60.4 N
|
| 3 mm |
|
9.23 kg / 20.35 lbs
9232.5 g / 90.6 N
|
| 5 mm |
|
15.39 kg / 33.92 lbs
15387.5 g / 151.0 N
|
| 10 mm |
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
| 11 mm |
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
| 12 mm |
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MPL 40x20x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
OK |
| 40 °C | -2.2% |
24.08 kg / 53.08 lbs
24078.4 g / 236.2 N
|
OK |
| 60 °C | -4.4% |
23.54 kg / 51.89 lbs
23536.7 g / 230.9 N
|
|
| 80 °C | -6.6% |
23.00 kg / 50.70 lbs
22995.1 g / 225.6 N
|
|
| 100 °C | -28.8% |
17.53 kg / 38.65 lbs
17529.4 g / 172.0 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MPL 40x20x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
60.25 kg / 132.83 lbs
4 926 Gs
|
9.04 kg / 19.93 lbs
9038 g / 88.7 N
|
N/A |
| 1 mm |
56.58 kg / 124.73 lbs
6 774 Gs
|
8.49 kg / 18.71 lbs
8487 g / 83.3 N
|
50.92 kg / 112.26 lbs
~0 Gs
|
| 2 mm |
52.81 kg / 116.42 lbs
6 544 Gs
|
7.92 kg / 17.46 lbs
7921 g / 77.7 N
|
47.53 kg / 104.78 lbs
~0 Gs
|
| 3 mm |
49.07 kg / 108.19 lbs
6 309 Gs
|
7.36 kg / 16.23 lbs
7361 g / 72.2 N
|
44.17 kg / 97.37 lbs
~0 Gs
|
| 5 mm |
41.89 kg / 92.34 lbs
5 828 Gs
|
6.28 kg / 13.85 lbs
6283 g / 61.6 N
|
37.70 kg / 83.11 lbs
~0 Gs
|
| 10 mm |
26.82 kg / 59.13 lbs
4 664 Gs
|
4.02 kg / 8.87 lbs
4023 g / 39.5 N
|
24.14 kg / 53.22 lbs
~0 Gs
|
| 20 mm |
10.12 kg / 22.32 lbs
2 865 Gs
|
1.52 kg / 3.35 lbs
1518 g / 14.9 N
|
9.11 kg / 20.09 lbs
~0 Gs
|
| 50 mm |
0.73 kg / 1.61 lbs
769 Gs
|
0.11 kg / 0.24 lbs
109 g / 1.1 N
|
0.66 kg / 1.45 lbs
~0 Gs
|
| 60 mm |
0.35 kg / 0.78 lbs
534 Gs
|
0.05 kg / 0.12 lbs
53 g / 0.5 N
|
0.32 kg / 0.70 lbs
~0 Gs
|
| 70 mm |
0.18 kg / 0.40 lbs
383 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.36 lbs
~0 Gs
|
| 80 mm |
0.10 kg / 0.22 lbs
282 Gs
|
0.01 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 90 mm |
0.06 kg / 0.12 lbs
214 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
165 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MPL 40x20x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 14.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 11.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 9.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 7.0 cm |
| Car key | 50 Gs (5.0 mT) | 6.5 cm |
| Payment card | 400 Gs (40.0 mT) | 2.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.0 cm |
Table 8: Dynamics (cracking risk) - collision effects
MPL 40x20x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.47 km/h
(6.24 m/s)
|
1.17 J | |
| 30 mm |
35.51 km/h
(9.86 m/s)
|
2.92 J | |
| 50 mm |
45.70 km/h
(12.69 m/s)
|
4.83 J | |
| 100 mm |
64.60 km/h
(17.95 m/s)
|
9.66 J |
Table 9: Anti-corrosion coating durability
MPL 40x20x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MPL 40x20x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 28 125 Mx | 281.2 µWb |
| Pc Coefficient | 0.42 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MPL 40x20x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 24.62 kg | Standard |
| Water (riverbed) |
28.19 kg
(+3.57 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet holds merely ~20% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. 0.5mm PC case) significantly limits the holding force.
3. Heat tolerance
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.42
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also offers
Advantages as well as disadvantages of Nd2Fe14B magnets.
Strengths
- They retain magnetic properties for almost 10 years – the drop is just ~1% (in theory),
- Magnets effectively defend themselves against demagnetization caused by foreign field sources,
- By applying a lustrous layer of gold, the element acquires an nice look,
- Magnetic induction on the working part of the magnet remains impressive,
- Through (appropriate) combination of ingredients, they can achieve high thermal resistance, allowing for action at temperatures reaching 230°C and above...
- Due to the ability of precise molding and customization to unique requirements, magnetic components can be created in a variety of geometric configurations, which amplifies use scope,
- Significant place in innovative solutions – they are commonly used in data components, electric motors, medical equipment, and technologically advanced constructions.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Limitations
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth securing magnets using a steel holder. Such protection not only protects the magnet but also improves its resistance to damage
- When exposed to high temperature, neodymium magnets experience a drop in force. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Magnets exposed to a humid environment can corrode. Therefore when using outdoors, we suggest using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
- Limited possibility of producing nuts in the magnet and complicated forms - preferred is cover - mounting mechanism.
- Possible danger to health – tiny shards of magnets are risky, in case of ingestion, which gains importance in the aspect of protecting the youngest. Additionally, tiny parts of these products can complicate diagnosis medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Holding force characteristics
Maximum holding power of the magnet – what it depends on?
- with the use of a sheet made of low-carbon steel, guaranteeing full magnetic saturation
- whose transverse dimension equals approx. 10 mm
- with an ground touching surface
- under conditions of ideal adhesion (metal-to-metal)
- under vertical application of breakaway force (90-degree angle)
- at ambient temperature approx. 20 degrees Celsius
Magnet lifting force in use – key factors
- Clearance – existence of foreign body (rust, tape, gap) acts as an insulator, which lowers capacity rapidly (even by 50% at 0.5 mm).
- Angle of force application – highest force is obtained only during perpendicular pulling. The force required to slide of the magnet along the plate is typically many times smaller (approx. 1/5 of the lifting capacity).
- Element thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet limits the lifting capacity (the magnet "punches through" it).
- Steel type – low-carbon steel attracts best. Alloy steels lower magnetic properties and lifting capacity.
- Surface quality – the more even the plate, the better the adhesion and higher the lifting capacity. Roughness creates an air distance.
- Thermal environment – temperature increase results in weakening of force. It is worth remembering the maximum operating temperature for a given model.
Lifting capacity was determined using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, however under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Moreover, even a small distance between the magnet’s surface and the plate lowers the holding force.
Safety rules for work with neodymium magnets
Life threat
For implant holders: Powerful magnets affect electronics. Keep minimum 30 cm distance or ask another person to work with the magnets.
Respect the power
Before starting, read the rules. Uncontrolled attraction can destroy the magnet or hurt your hand. Think ahead.
Heat sensitivity
Keep cool. Neodymium magnets are susceptible to temperature. If you need operation above 80°C, inquire about special high-temperature series (H, SH, UH).
Threat to navigation
GPS units and smartphones are extremely susceptible to magnetism. Close proximity with a powerful NdFeB magnet can permanently damage the internal compass in your phone.
Dust explosion hazard
Powder generated during machining of magnets is flammable. Avoid drilling into magnets without proper cooling and knowledge.
Risk of cracking
Beware of splinters. Magnets can explode upon violent connection, ejecting sharp fragments into the air. We recommend safety glasses.
Product not for children
Product intended for adults. Tiny parts pose a choking risk, causing severe trauma. Store away from children and animals.
Magnetic media
Data protection: Neodymium magnets can damage data carriers and delicate electronics (pacemakers, hearing aids, timepieces).
Finger safety
Large magnets can smash fingers in a fraction of a second. Under no circumstances place your hand between two strong magnets.
Nickel allergy
Medical facts indicate that the nickel plating (the usual finish) is a potent allergen. If your skin reacts to metals, refrain from direct skin contact and choose coated magnets.
