tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in airtight and durable enclosure are excellent for use in difficult, demanding weather, including in the rain and snow see more...

magnetic holders

Magnetic holders can be used to facilitate production, underwater discoveries, or finding meteors from gold check...

Enjoy shipping of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 2 days!

MPL 40x20x10 / N38 - neodymium magnet

lamellar magnet

catalog number 020158

GTIN: 5906301811640

no reviews

length

40 mm [±0,1 mm]

width

20 mm [±0,1 mm]

height

10 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

22.34 kg / 219.08 N

magnetic induction ~

349.60 mT / 3,496 Gs

max. temperature

≤ 80 °C

31.00 gross price (including VAT) / pcs +

25.20 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
25.20 ZŁ
31.00 ZŁ
price from 24 pcs
23.69 ZŁ
29.14 ZŁ
price from 88 pcs
22.18 ZŁ
27.28 ZŁ

Don't know what to choose?

Call us tel: +48 888 99 98 98 or write through form on the contact page. You can check the strength as well as the appearance of neodymium magnet in our magnetic calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 40x20x10 / N38 ↑ axial

Characteristics: lamellar magnet 40x20x10 / N38 ↑ axial
Properties
Values
catalog number
020158
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
40 mm [±0,1 mm]
width
20 mm [±0,1 mm]
height
10 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
22.34 kg / 219.08 N
magnetic induction ~ ?
349.60 mT / 3,496 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
60.00 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Flat neodymium magnets i.e. MPL 40x20x10 / N38 are magnets created from neodymium in a rectangular form. They are valued for their exceptionally potent magnetic properties, which outshine ordinary ferrite magnets.
Thanks to their mighty power, flat magnets are regularly used in devices that need strong holding power.
The standard temperature resistance of flat magnets is 80°C, but with larger dimensions, this value grows.
Moreover, flat magnets often have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, for enhancing their durability.
The magnet named MPL 40x20x10 / N38 and a lifting capacity of 22.34 kg with a weight of only 60.00 grams, making it the ideal choice for projects needing a flat magnet.
Neodymium flat magnets provide a range of advantages versus other magnet shapes, which make them being an ideal choice for many applications:
Contact surface: Thanks to their flat shape, flat magnets guarantee a larger contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often used in different devices, e.g. sensors, stepper motors, or speakers, where the flat shape is crucial for their operation.
Mounting: Their flat shape simplifies mounting, particularly when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets permits designers greater flexibility in placing them in structures, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, minimizing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet depends on the given use and requirements. In some cases, other shapes, such as cylindrical or spherical, are more appropriate.
How do magnets work? Magnets attract ferromagnetic materials, such as iron, nickel, materials with cobalt and alloys of metals with magnetic properties. Moreover, magnets may weaker affect some other metals, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of these objects creates attractive interactions, which attract materials containing iron or other magnetic materials.

Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Similar poles, e.g. two north poles, repel each other.
Due to these properties, magnets are commonly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the material it is made of.
Magnets do not attract plastic, glass items, wood and most gemstones. Furthermore, magnets do not affect certain metals, such as copper, aluminum materials, items made of gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It’s worth noting that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.

Find suggested articles

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which amplifies their universality in usage.
  • Wide application in advanced technologically fields – are utilized in hard drives, electric motors, medical apparatus or other modern machines.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets can be dangerous, if swallowed, which is crucial in the context of child safety. It's also worth noting that tiny parts of these devices have the potential to hinder the diagnostic process in case of swallowing.

Caution with Neodymium Magnets

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnetic are incredibly fragile, they easily crack as well as can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets will jump and also touch together within a distance of several to almost 10 cm from each other.

In order to show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98