tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. All magnesy on our website are in stock for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to buy very strong magnet? Magnetic holders in airtight and durable enclosure are ideally suited for use in difficult, demanding weather conditions, including snow and rain check...

magnets with holders

Holders with magnets can be applied to facilitate production processes, underwater exploration, or searching for meteors made of ore check...

Enjoy delivery of your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x275 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130458

GTIN: 5906301813293

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

275 mm

Weight

1520 g

897.90 with VAT / pcs + price for transport

730.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
730.00 ZŁ
897.90 ZŁ
price from 5 pcs
693.50 ZŁ
853.01 ZŁ
price from 10 pcs
657.00 ZŁ
808.11 ZŁ

Need advice?

Contact us by phone +48 888 99 98 98 alternatively get in touch using our online form through our site.
Force and form of magnets can be reviewed on our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SM 32x275 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x275 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130458
GTIN
5906301813293
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
275 mm [±0,1 mm]
Weight
1520 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are embedded in a casing made of stainless steel mostly AISI304. In this way, it is possible to effectively separate ferromagnetic elements from different substances. A fundamental component of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be collected. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food sector for the elimination of metallic contaminants, including iron fragments or iron dust. Our rods are made from durable acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, often called magnetic separators, find application in metal separation, food production as well as recycling. They help in eliminating iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of a neodymium magnet placed in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, which enables simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Generally it is believed that the stronger the magnet, the more effective. But, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are more compressed. Otherwise, when the magnet is thick, the force lines are extended and reach further.
For creating the casings of magnetic separators - rollers, most often stainless steel is utilized, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, type AISI 316 steel exhibits the best resistance thanks to its exceptional anti-corrosion properties.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, it’s worth cleaning regularly, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Magnetic field measurements should be carried out once every 24 months. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their immense strength, neodymium magnets offer the following advantages:

  • Their magnetic field is durable, and after approximately ten years, it drops only by ~1% (according to research),
  • They protect against demagnetization induced by surrounding electromagnetic environments remarkably well,
  • In other words, due to the shiny nickel coating, the magnet obtains an professional appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • With the option for tailored forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Key role in new technology industries – they serve a purpose in data storage devices, electromechanical systems, diagnostic apparatus as well as sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment. If exposed to rain, we recommend using sealed magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
  • Possible threat due to small fragments may arise, if ingested accidentally, which is significant in the context of child safety. Additionally, miniature parts from these products can hinder health screening after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what it depends on?

The given holding capacity of the magnet means the highest holding force, measured in ideal conditions, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under perpendicular forces, however under parallel forces the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet and the plate lowers the lifting capacity.

Caution with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are fragile as well as can easily crack and shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Caution!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98