tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. All magnesy neodymowe in our store are available for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for searching F400 GOLD

Where to buy very strong magnet? Magnetic holders in airtight, solid steel enclosure are excellent for use in variable and difficult weather conditions, including during rain and snow check...

magnets with holders

Holders with magnets can be used to facilitate manufacturing, underwater exploration, or finding space rocks made of ore read...

We promise to ship your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

SM 32x275 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130458

GTIN: 5906301813293

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

275 mm

Weight

1520 g

897.90 with VAT / pcs + price for transport

730.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
730.00 ZŁ
897.90 ZŁ
price from 5 pcs
693.50 ZŁ
853.01 ZŁ
price from 10 pcs
657.00 ZŁ
808.11 ZŁ

Do you have trouble choosing?

Call us +48 888 99 98 98 if you prefer contact us through inquiry form the contact form page.
Specifications along with appearance of neodymium magnets can be estimated using our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

SM 32x275 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x275 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130458
GTIN
5906301813293
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
275 mm [±0,1 mm]
Weight
1520 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This product serves to catch ferromagnetic impurities from raw materials. Its task is to separate metal filings from the transported material. Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The outer layer is polished acid-resistant steel, approved for food contact. The core is a magnetic circuit generating high induction. Such construction ensures resistance to corrosion, water, and acids.
Due to high power, direct removal of filings can be troublesome. You can use compressed air or special non-magnetic strippers. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
Magnetic induction measured in Gauss (Gs) determines the magnetic flux density on the rod surface. The economical version handles large metal pieces well. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
We can produce a rod with any mounting end. The rod end is adapted to the mounting system in your separator. We ensure fast execution of special orders.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:

  • They retain their full power for around 10 years – the loss is just ~1% (according to analyses),
  • They show exceptional resistance to demagnetization from external magnetic fields,
  • Because of the lustrous layer of silver, the component looks high-end,
  • They have exceptional magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
  • Important function in advanced technical fields – they are used in computer drives, electric motors, healthcare devices as well as sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which allows for use in small systems

Disadvantages of magnetic elements:

  • They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and additionally increases its overall resistance,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing holes directly in the magnet,
  • Safety concern from tiny pieces may arise, when consumed by mistake, which is crucial in the health of young users. Furthermore, minuscule fragments from these products can disrupt scanning if inside the body,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Breakaway strength of the magnet in ideal conditionswhat affects it?

The given pulling force of the magnet corresponds to the maximum force, determined in a perfect environment, that is:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

What influences lifting capacity in practice

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a slight gap {between} the magnet and the plate decreases the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or a fracture.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Magnets made of neodymium are known for being fragile, which can cause them to crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Pay attention!

To show why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98