tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. Practically all magnesy on our website are in stock for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnets for searching F200 GOLD

Where to purchase powerful magnet? Magnetic holders in solid and airtight steel enclosure are ideally suited for use in variable and difficult weather conditions, including during snow and rain check...

magnetic holders

Magnetic holders can be applied to facilitate production, exploring underwater areas, or finding meteors made of ore more...

We promise to ship ordered magnets on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x275 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130458

GTIN: 5906301813293

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

275 mm

Weight

1520 g

897.90 with VAT / pcs + price for transport

730.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
730.00 ZŁ
897.90 ZŁ
price from 5 pcs
693.50 ZŁ
853.01 ZŁ
price from 10 pcs
657.00 ZŁ
808.11 ZŁ

Not sure about your choice?

Give us a call +48 22 499 98 98 or send us a note through form the contact section.
Strength and structure of a magnet can be reviewed using our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x275 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x275 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130458
GTIN
5906301813293
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
275 mm [±0,1 mm]
Weight
1520 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, placed in a construction made of stainless steel usually AISI304. In this way, it is possible to efficiently remove ferromagnetic particles from different substances. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made from ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are used in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rods are made from acid-resistant steel, AISI 304, suitable for use in food.
Magnetic rollers, otherwise magnetic separators, find application in food production, metal separation as well as waste processing. They help in removing iron dust during the process of separating metals from other wastes.
Our magnetic rollers consist of neodymium magnets placed in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Often it is believed that the stronger the magnet, the better. But, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines will be more compressed. Otherwise, when the magnet is thick, the force lines will be extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, usually stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, AISI 316 steel is recommended due to its exceptional anti-corrosion properties.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and weaken. Magnetic field measurements is recommended be carried out once every 24 months. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their immense pulling force, neodymium magnets offer the following advantages:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
  • Their ability to resist magnetic interference from external fields is notable,
  • Because of the lustrous layer of nickel, the component looks visually appealing,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • The ability for accurate shaping as well as adaptation to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Significant impact in cutting-edge sectors – they find application in HDDs, electromechanical systems, healthcare devices and other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall resistance,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
  • Limited ability to create threads in the magnet – the use of a housing is recommended,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is crucial in the context of child safety. Moreover, small elements from these products may complicate medical imaging after being swallowed,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Maximum lifting capacity of the magnetwhat it depends on?

The given holding capacity of the magnet corresponds to the highest holding force, determined under optimal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • under standard ambient temperature

Determinants of lifting force in real conditions

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under shearing force the lifting capacity is smaller. Moreover, even a small distance {between} the magnet and the plate lowers the holding force.

Exercise Caution with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets jump and clash mutually within a radius of several to around 10 cm from each other.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are known for being fragile, which can cause them to become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Warning!

To show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98