tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our proposal. All magnesy in our store are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to buy powerful magnet? Magnet holders in airtight, solid steel enclosure are excellent for use in challenging weather conditions, including in the rain and snow check...

magnets with holders

Magnetic holders can be applied to facilitate manufacturing, exploring underwater areas, or finding meteors made of ore more information...

Shipping always shipped on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x500 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130467

GTIN: 5906301813385

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

500 mm

Weight

2770 g

1562.10 with VAT / pcs + price for transport

1270.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1270.00 ZŁ
1562.10 ZŁ
price from 5 pcs
1143.00 ZŁ
1405.89 ZŁ

Want to negotiate?

Pick up the phone and ask +48 888 99 98 98 if you prefer contact us using form the contact form page.
Weight along with shape of a magnet can be checked with our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x500 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x500 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130467
GTIN
5906301813385
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
500 mm [±0,1 mm]
Weight
2770 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are welded in a casing made of stainless steel usually AISI304. In this way, it is possible to efficiently remove ferromagnetic particles from the mixture. A key aspect of its operation is the use of repulsion of magnetic poles N and S, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic particles. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in the food industry for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rods are built from durable acid-resistant steel, EN 1.4301, suitable for contact with food.
Magnetic rollers, otherwise magnetic separators, are employed in metal separation, food production as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the greater the magnet's power, the more effective. Nevertheless, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are short. By contrast, in the case of a thicker magnet, the force lines will be longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, usually stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel is recommended due to its excellent corrosion resistance.
Magnetic bars stand out for their specific arrangement of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other devices that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from contaminants, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Magnetic field measurements should be carried out once every 24 months. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They do not lose their even during nearly 10 years – the reduction of lifting capacity is only ~1% (based on measurements),
  • They protect against demagnetization induced by ambient electromagnetic environments effectively,
  • Because of the reflective layer of silver, the component looks aesthetically refined,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their usage potential,
  • Significant impact in advanced technical fields – they serve a purpose in data storage devices, electric drives, clinical machines along with technologically developed systems,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of NdFeB magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall durability,
  • They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can corrode. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is not feasible,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is significant in the health of young users. Furthermore, minuscule fragments from these assemblies have the potential to interfere with diagnostics once in the system,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Best holding force of the magnet in ideal parameterswhat it depends on?

The given lifting capacity of the magnet represents the maximum lifting force, determined in the best circumstances, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate lowers the lifting capacity.

Caution with Neodymium Magnets

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnetic are extremely delicate, they easily fall apart as well as can crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when they attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a serious pressure or a fracture.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98