e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. All "neodymium magnets" on our website are available for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for fishing F400 GOLD

Where to purchase powerful magnet? Magnet holders in solid and airtight steel enclosure are ideally suited for use in difficult, demanding weather, including snow and rain see more...

magnetic holders

Magnetic holders can be used to enhance manufacturing, underwater discoveries, or locating meteors from gold more information...

Enjoy delivery of your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x500 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130467

GTIN: 5906301813385

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

500 mm

Weight

2770 g

1562.10 with VAT / pcs + price for transport

1270.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1270.00 ZŁ
1562.10 ZŁ
price from 5 pcs
1143.00 ZŁ
1405.89 ZŁ

Want to negotiate?

Call us +48 22 499 98 98 if you prefer drop us a message using form the contact section.
Force and form of a neodymium magnet can be analyzed using our modular calculator.

Orders submitted before 14:00 will be dispatched today!

SM 32x500 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x500 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130467
GTIN
5906301813385
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
500 mm [±0,1 mm]
Weight
2770 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. In this way, it is possible to precisely remove ferromagnetic elements from other materials. An important element of its operation is the repulsion of magnetic poles N and S, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in food production for the elimination of metallic contaminants, including iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, AISI 304, approved for contact with food.
Magnetic rollers, otherwise cylindrical magnets, find application in food production, metal separation as well as waste processing. They help in extracting iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers consist of a neodymium magnet embedded in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the greater the magnet's power, the more effective. But, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines are more compressed. Otherwise, in the case of a thicker magnet, the force lines will be longer and reach further.
For creating the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a saltwater environment, type AISI 316 steel is recommended thanks to its exceptional corrosion resistance.
Magnetic rollers stand out for their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other separators that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, you should washing after each use, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and lose their power. Magnetic field measurements should be carried out once every 24 months. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (according to literature),
  • Their ability to resist magnetic interference from external fields is among the best,
  • The use of a polished nickel surface provides a refined finish,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Significant impact in modern technologies – they are used in hard drives, electric motors, clinical machines or even high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall strength,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment. If exposed to rain, we recommend using sealed magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Possible threat related to magnet particles may arise, when consumed by mistake, which is notable in the protection of children. Moreover, small elements from these products might hinder health screening once in the system,
  • In cases of mass production, neodymium magnet cost is a challenge,

Maximum lifting capacity of the magnetwhat it depends on?

The given lifting capacity of the magnet represents the maximum lifting force, determined in ideal conditions, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under shearing force the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.

Caution with Neodymium Magnets

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If have a finger between or on the path of attracting magnets, there may be a serious cut or even a fracture.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are extremely delicate, they easily crack as well as can crumble.

Neodymium magnets are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Safety rules!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98