tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our proposal. All magnesy neodymowe in our store are in stock for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnet for fishing F400 GOLD

Where to buy very strong magnet? Holders with magnets in airtight and durable enclosure are ideally suited for use in difficult, demanding weather conditions, including snow and rain more information...

magnets with holders

Magnetic holders can be used to improve production, exploring underwater areas, or searching for space rocks from gold more...

Order is always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x500 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130467

GTIN: 5906301813385

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

500 mm

Weight

2770 g

1 562.10 with VAT / pcs + price for transport

1 270.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1 270.00 ZŁ
1 562.10 ZŁ
price from 2200 pcs
1 206.50 ZŁ
1 483.99 ZŁ
price from 4400 pcs
1 143.00 ZŁ
1 405.89 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 32x500 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x500 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130467
GTIN
5906301813385
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
500 mm [±0,1 mm]
Weight
2770 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. Due to this, it is possible to precisely separate ferromagnetic particles from different substances. A key aspect of its operation is the repulsion of magnetic poles N and S, which causes magnetic substances to be targeted. The thickness of the embedded magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in food production to clear metallic contaminants, such as iron fragments or iron dust. Our rollers are built from durable acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, otherwise magnetic separators, are used in metal separation, food production as well as recycling. They help in extracting iron dust during the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets embedded in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the better. However, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. On the other hand, when the magnet is thick, the force lines are longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, usually stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, type AISI 316 steel is highly recommended due to its outstanding corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other devices that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
By ensuring proper maintenance of neodymium magnetic rollers, you should cleaning after each use, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and lose their power. Magnetic field measurements should be carried out every two years. Care should be taken, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After 10 years, their power decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in various forms and dimensions, which enhances their versatility in applications.
  • Significant importance in the industry of new technologies – are used in hard drives, electric drive mechanisms, medical equipment and very modern machines.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Potential hazard to health from tiny fragments of magnets pose a threat, when accidentally ingested, which is crucial in the aspect of protecting young children. Additionally, small elements of these devices have the potential to complicate diagnosis in case of swallowing.

Handle Neodymium Magnets with Caution

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

 It is essential to keep neodymium magnets out of reach from children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are known for being fragile, which can cause them to crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Caution!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98