tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. All "magnets" on our website are available for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to buy very strong neodymium magnet? Magnet holders in airtight, solid steel casing are excellent for use in variable and difficult weather, including during snow and rain more information...

magnets with holders

Holders with magnets can be applied to facilitate production processes, exploring underwater areas, or searching for space rocks from gold see more...

We promise to ship your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x500 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130467

GTIN: 5906301813385

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

500 mm

Weight

2770 g

1562.10 with VAT / pcs + price for transport

1270.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1270.00 ZŁ
1562.10 ZŁ
price from 5 pcs
1143.00 ZŁ
1405.89 ZŁ

Can't decide what to choose?

Call us +48 888 99 98 98 or drop us a message through request form the contact page.
Specifications and appearance of magnetic components can be analyzed on our online calculation tool.

Orders submitted before 14:00 will be dispatched today!

SM 32x500 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x500 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130467
GTIN
5906301813385
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
500 mm [±0,1 mm]
Weight
2770 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, placed in a casing made of stainless steel usually AISI304. Due to this, it is possible to effectively segregate ferromagnetic elements from other materials. An important element of its operation is the repulsion of magnetic poles N and S, which causes magnetic substances to be attracted. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are used to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in the food industry to remove metallic contaminants, for example iron fragments or iron dust. Our rods are built from durable acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, often called magnetic separators, are used in metal separation, food production as well as waste processing. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet embedded in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Generally it is believed that the greater the magnet's power, the better. But, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be short. By contrast, when the magnet is thick, the force lines are longer and extend over a greater distance.
For creating the casings of magnetic separators - rollers, usually stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, AISI 316 steel is highly recommended thanks to its exceptional corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, you should washing regularly, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out every two years. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their consistent holding force, neodymium magnets have these key benefits:

  • They retain their full power for around ten years – the loss is just ~1% (in theory),
  • They protect against demagnetization induced by ambient electromagnetic environments very well,
  • The use of a polished silver surface provides a eye-catching finish,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for accurate shaping or customization to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Wide application in cutting-edge sectors – they are utilized in hard drives, electric drives, healthcare devices and sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which allows for use in compact constructions

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall resistance,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to damp air can corrode. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • Limited ability to create internal holes in the magnet – the use of a housing is recommended,
  • Possible threat linked to microscopic shards may arise, when consumed by mistake, which is important in the family environments. Additionally, minuscule fragments from these assemblies may interfere with diagnostics once in the system,
  • Due to a complex production process, their cost is above average,

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given holding capacity of the magnet means the highest holding force, determined in the best circumstances, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Magnet lifting force in use – key factors

The lifting capacity of a magnet depends on in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet and the plate lowers the lifting capacity.

Notes with Neodymium Magnets

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If you have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.

 It is essential to keep neodymium magnets out of reach from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnetic are delicate and can easily break as well as shatter.

Neodymium magnetic are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Be careful!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98