tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. All magnesy neodymowe in our store are in stock for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to buy strong magnet? Magnetic holders in airtight, solid steel enclosure are excellent for use in difficult climate conditions, including during snow and rain more...

magnets with holders

Holders with magnets can be used to enhance production processes, exploring underwater areas, or finding meteorites from gold more information...

Order is always shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships in 2 days

SM 32x500 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130467

GTIN: 5906301813385

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

500 mm

Weight

2770 g

1562.10 with VAT / pcs + price for transport

1270.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1270.00 ZŁ
1562.10 ZŁ
price from 5 pcs
1143.00 ZŁ
1405.89 ZŁ

Want to talk magnets?

Give us a call +48 22 499 98 98 if you prefer get in touch by means of request form our website.
Parameters as well as form of a neodymium magnet can be estimated using our force calculator.

Orders submitted before 14:00 will be dispatched today!

SM 32x500 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x500 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130467
GTIN
5906301813385
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
500 mm [±0,1 mm]
Weight
2770 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic rod is the basic building block of grate separators. Its task is to separate metal filings from the transported material. High magnetic induction allows catching the finest iron particles.
The construction is based on a sealed stainless steel housing. Inside, there is a stack of strong neodymium magnets in a special configuration. Thanks to this, the rod is durable and hygienic.
Metal filings stick very firmly to the surface, so cleaning requires strength or a trick. You can use compressed air or special non-magnetic strippers. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The Gauss value tells us how effectively the magnet will catch small impurities. Standard rods (~8000 Gs) are sufficient for bolts, nails, and chips. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
Yes, as a manufacturer, we make rods of any length and diameter (standard is 25mm and 32mm). You can choose a mounting method compatible with your project. We ensure fast execution of special orders.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their immense magnetic power, neodymium magnets offer the following advantages:

  • They retain their magnetic properties for nearly 10 years – the drop is just ~1% (according to analyses),
  • They show superior resistance to demagnetization from external magnetic fields,
  • The use of a mirror-like silver surface provides a eye-catching finish,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Wide application in cutting-edge sectors – they are utilized in computer drives, rotating machines, healthcare devices or even sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of rubber,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard from tiny pieces may arise, if ingested accidentally, which is important in the family environments. Moreover, small elements from these products have the potential to interfere with diagnostics once in the system,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Maximum magnetic pulling forcewhat affects it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in ideal conditions, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under shearing force the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.

Be Cautious with Neodymium Magnets

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

  Do not give neodymium magnets to children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Neodymium magnets will jump and also contact together within a distance of several to around 10 cm from each other.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnetic are highly fragile, they easily break and can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Pay attention!

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98