SM 32x500 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130467
GTIN: 5906301813385
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
500 mm
Weight
2770 g
1562.10 ZŁ with VAT / pcs + price for transport
1270.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us
+48 888 99 98 98
alternatively send us a note using
request form
through our site.
Strength and structure of magnets can be tested with our
magnetic mass calculator.
Orders submitted before 14:00 will be dispatched today!
SM 32x500 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent magnetic energy, neodymium magnets have these key benefits:
- Their strength is durable, and after approximately ten years, it drops only by ~1% (theoretically),
- They show superior resistance to demagnetization from external field exposure,
- Thanks to the shiny finish and silver coating, they have an visually attractive appearance,
- The outer field strength of the magnet shows elevated magnetic properties,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
- Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
- Wide application in cutting-edge sectors – they are utilized in computer drives, electric motors, diagnostic apparatus or even other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time reinforces its overall resistance,
- They lose power at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of synthetic coating for outdoor use,
- Limited ability to create threads in the magnet – the use of a external casing is recommended,
- Potential hazard linked to microscopic shards may arise, especially if swallowed, which is crucial in the family environments. Furthermore, tiny components from these magnets can disrupt scanning if inside the body,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Detachment force of the magnet in optimal conditions – what affects it?
The given strength of the magnet corresponds to the optimal strength, determined in the best circumstances, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- at room temperature
Impact of factors on magnetic holding capacity in practice
Practical lifting force is determined by elements, by priority:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under perpendicular forces, whereas under shearing force the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet and the plate lowers the lifting capacity.
Precautions with Neodymium Magnets
Neodymium magnets can become demagnetized at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Keep neodymium magnets far from youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Do not bring neodymium magnets close to GPS and smartphones.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets made of neodymium are noted for their fragility, which can cause them to become damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Warning!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.