UMP 107x40 [M8+M10] GW F 400 kg / N38 - search holder
search holder
Catalog no 210338
GTIN: 5906301813972
Diameter Ø [±0,1 mm]
107 mm
Height [±0,1 mm]
40 mm
Weight
2350 g
Load capacity
480 kg / 4707.19 N
Coating
[NiCuNi] nickel
400.00 ZŁ with VAT / pcs + price for transport
325.20 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Contact us by phone
+48 888 99 98 98
or get in touch via
form
the contact page.
Weight and shape of magnets can be estimated using our
magnetic calculator.
Order by 14:00 and we’ll ship today!
UMP 107x40 [M8+M10] GW F 400 kg / N38 - search holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional field intensity, neodymium magnets offer the following advantages:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (based on calculations),
- They protect against demagnetization induced by ambient electromagnetic environments effectively,
- In other words, due to the shiny silver coating, the magnet obtains an stylish appearance,
- They possess intense magnetic force measurable at the magnet’s surface,
- With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their application range,
- Important function in cutting-edge sectors – they are used in computer drives, electric drives, diagnostic apparatus and high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of rare earth magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall durability,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
- Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
- Safety concern from tiny pieces may arise, if ingested accidentally, which is crucial in the protection of children. It should also be noted that miniature parts from these magnets have the potential to hinder health screening when ingested,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Best holding force of the magnet in ideal parameters – what affects it?
The given holding capacity of the magnet corresponds to the highest holding force, determined in ideal conditions, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- in a perpendicular direction of force
- at room temperature
Impact of factors on magnetic holding capacity in practice
In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined using a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under shearing force the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate decreases the holding force.
Handle Neodymium Magnets Carefully
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Do not give neodymium magnets to youngest children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a serious pressure or a fracture.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Magnets made of neodymium are highly susceptible to damage, leading to breaking.
Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Never bring neodymium magnets close to a phone and GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Safety precautions!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
