MPL 20x5x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020132
GTIN: 5906301811381
length [±0,1 mm]
20 mm
Width [±0,1 mm]
5 mm
Height [±0,1 mm]
5 mm
Weight
3.75 g
Magnetization Direction
↑ axial
Load capacity
3.95 kg / 38.74 N
Magnetic Induction
456.78 mT
Coating
[NiCuNi] nickel
2.76 ZŁ with VAT / pcs + price for transport
2.24 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Give us a call
+48 22 499 98 98
alternatively contact us through
our online form
the contact section.
Parameters along with structure of magnetic components can be tested using our
magnetic mass calculator.
Same-day shipping for orders placed before 14:00.
MPL 20x5x5 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Thanks to their mighty power, flat magnets are regularly applied in structures that need very strong attraction.
Most common temperature resistance of these magnets is 80°C, but depending on the dimensions, this value can increase.
Moreover, flat magnets often have different coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their corrosion resistance.
The magnet labeled MPL 20x5x5 / N38 i.e. a magnetic strength 3.95 kg which weighs only 3.75 grams, making it the ideal choice for applications requiring a flat shape.
Contact surface: Due to their flat shape, flat magnets guarantee a larger contact surface with other components, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: These are often utilized in many devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is necessary for their operation.
Mounting: The flat form's flat shape simplifies mounting, especially when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers a lot of flexibility in arranging them in structures, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet may provide better stability, reducing the risk of sliding or rotating. However, it's important to note that the optimal shape of the magnet depends on the specific application and requirements. In certain cases, other shapes, such as cylindrical or spherical, are a better choice.
Magnets have two main poles: north (N) and south (S), which interact with each other when they are different. Poles of the same kind, such as two north poles, act repelling on each other.
Due to these properties, magnets are often used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them perfect for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the materials used.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, magnetic stripe cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to exercise caution when using magnets.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- Their strength is maintained, and after approximately ten years, it drops only by ~1% (theoretically),
- They are extremely resistant to demagnetization caused by external field interference,
- The use of a decorative gold surface provides a smooth finish,
- They have very high magnetic induction on the surface of the magnet,
- With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- The ability for accurate shaping or customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Key role in modern technologies – they find application in HDDs, electric motors, clinical machines along with other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in compact constructions
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage while also increases its overall strength,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a moist environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
- Safety concern linked to microscopic shards may arise, especially if swallowed, which is important in the health of young users. Furthermore, small elements from these products can interfere with diagnostics once in the system,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Best holding force of the magnet in ideal parameters – what contributes to it?
The given strength of the magnet means the optimal strength, measured under optimal conditions, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Key elements affecting lifting force
Practical lifting force is dependent on elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Exercise Caution with Neodymium Magnets
Magnets are not toys, youngest should not play with them.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets are known for being fragile, which can cause them to become damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Pay attention!
So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.