MPL 17x17x3 / N38 - lamellar magnet
lamellar magnet
Catalog no 020124
GTIN/EAN: 5906301811305
length
17 mm [±0,1 mm]
Width
17 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
6.5 g
Magnetization Direction
↑ axial
Load capacity
3.22 kg / 31.54 N
Magnetic Induction
187.48 mT / 1875 Gs
Coating
[NiCuNi] Nickel
4.71 ZŁ with VAT / pcs + price for transport
3.83 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 888 99 98 98
otherwise contact us using
inquiry form
the contact section.
Weight as well as appearance of a neodymium magnet can be estimated with our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
Detailed specification - MPL 17x17x3 / N38 - lamellar magnet
Specification / characteristics - MPL 17x17x3 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020124 |
| GTIN/EAN | 5906301811305 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 17 mm [±0,1 mm] |
| Width | 17 mm [±0,1 mm] |
| Height | 3 mm [±0,1 mm] |
| Weight | 6.5 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 3.22 kg / 31.54 N |
| Magnetic Induction ~ ? | 187.48 mT / 1875 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical simulation of the magnet - report
The following values represent the outcome of a physical simulation. Values are based on algorithms for the material Nd2Fe14B. Real-world conditions might slightly differ. Treat these calculations as a supplementary guide when designing systems.
Table 1: Static pull force (force vs distance) - power drop
MPL 17x17x3 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1874 Gs
187.4 mT
|
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
warning |
| 1 mm |
1761 Gs
176.1 mT
|
2.84 kg / 6.27 lbs
2842.9 g / 27.9 N
|
warning |
| 2 mm |
1610 Gs
161.0 mT
|
2.38 kg / 5.24 lbs
2376.8 g / 23.3 N
|
warning |
| 3 mm |
1440 Gs
144.0 mT
|
1.90 kg / 4.19 lbs
1901.0 g / 18.6 N
|
weak grip |
| 5 mm |
1099 Gs
109.9 mT
|
1.11 kg / 2.44 lbs
1107.5 g / 10.9 N
|
weak grip |
| 10 mm |
508 Gs
50.8 mT
|
0.24 kg / 0.52 lbs
236.4 g / 2.3 N
|
weak grip |
| 15 mm |
245 Gs
24.5 mT
|
0.06 kg / 0.12 lbs
55.2 g / 0.5 N
|
weak grip |
| 20 mm |
131 Gs
13.1 mT
|
0.02 kg / 0.03 lbs
15.7 g / 0.2 N
|
weak grip |
| 30 mm |
48 Gs
4.8 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
weak grip |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
weak grip |
Table 2: Vertical force (vertical surface)
MPL 17x17x3 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 1.42 lbs
644.0 g / 6.3 N
|
| 1 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
568.0 g / 5.6 N
|
| 2 mm | Stal (~0.2) |
0.48 kg / 1.05 lbs
476.0 g / 4.7 N
|
| 3 mm | Stal (~0.2) |
0.38 kg / 0.84 lbs
380.0 g / 3.7 N
|
| 5 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
222.0 g / 2.2 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MPL 17x17x3 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.97 kg / 2.13 lbs
966.0 g / 9.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 1.42 lbs
644.0 g / 6.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 0.71 lbs
322.0 g / 3.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.61 kg / 3.55 lbs
1610.0 g / 15.8 N
|
Table 4: Material efficiency (substrate influence) - power losses
MPL 17x17x3 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 0.71 lbs
322.0 g / 3.2 N
|
| 1 mm |
|
0.81 kg / 1.77 lbs
805.0 g / 7.9 N
|
| 2 mm |
|
1.61 kg / 3.55 lbs
1610.0 g / 15.8 N
|
| 3 mm |
|
2.42 kg / 5.32 lbs
2415.0 g / 23.7 N
|
| 5 mm |
|
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 10 mm |
|
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 11 mm |
|
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 12 mm |
|
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
Table 5: Thermal stability (stability) - thermal limit
MPL 17x17x3 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
OK |
| 40 °C | -2.2% |
3.15 kg / 6.94 lbs
3149.2 g / 30.9 N
|
OK |
| 60 °C | -4.4% |
3.08 kg / 6.79 lbs
3078.3 g / 30.2 N
|
|
| 80 °C | -6.6% |
3.01 kg / 6.63 lbs
3007.5 g / 29.5 N
|
|
| 100 °C | -28.8% |
2.29 kg / 5.05 lbs
2292.6 g / 22.5 N
|
Table 6: Two magnets (attraction) - forces in the system
MPL 17x17x3 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
6.26 kg / 13.80 lbs
3 313 Gs
|
0.94 kg / 2.07 lbs
939 g / 9.2 N
|
N/A |
| 1 mm |
5.93 kg / 13.07 lbs
3 648 Gs
|
0.89 kg / 1.96 lbs
889 g / 8.7 N
|
5.33 kg / 11.76 lbs
~0 Gs
|
| 2 mm |
5.53 kg / 12.19 lbs
3 523 Gs
|
0.83 kg / 1.83 lbs
829 g / 8.1 N
|
4.97 kg / 10.97 lbs
~0 Gs
|
| 3 mm |
5.08 kg / 11.21 lbs
3 379 Gs
|
0.76 kg / 1.68 lbs
763 g / 7.5 N
|
4.58 kg / 10.09 lbs
~0 Gs
|
| 5 mm |
4.15 kg / 9.16 lbs
3 053 Gs
|
0.62 kg / 1.37 lbs
623 g / 6.1 N
|
3.74 kg / 8.24 lbs
~0 Gs
|
| 10 mm |
2.15 kg / 4.75 lbs
2 199 Gs
|
0.32 kg / 0.71 lbs
323 g / 3.2 N
|
1.94 kg / 4.27 lbs
~0 Gs
|
| 20 mm |
0.46 kg / 1.01 lbs
1 016 Gs
|
0.07 kg / 0.15 lbs
69 g / 0.7 N
|
0.41 kg / 0.91 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
153 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
96 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
64 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (implants) - precautionary measures
MPL 17x17x3 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 7.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 4.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 3.5 cm |
| Remote | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (kinetic energy) - collision effects
MPL 17x17x3 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
23.45 km/h
(6.52 m/s)
|
0.14 J | |
| 30 mm |
38.89 km/h
(10.80 m/s)
|
0.38 J | |
| 50 mm |
50.19 km/h
(13.94 m/s)
|
0.63 J | |
| 100 mm |
70.98 km/h
(19.72 m/s)
|
1.26 J |
Table 9: Corrosion resistance
MPL 17x17x3 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MPL 17x17x3 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 6 509 Mx | 65.1 µWb |
| Pc Coefficient | 0.23 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MPL 17x17x3 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 3.22 kg | Standard |
| Water (riverbed) |
3.69 kg
(+0.47 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical surface, the magnet retains just approx. 20-30% of its max power.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) significantly weakens the holding force.
3. Temperature resistance
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.23
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also deals
Strengths as well as weaknesses of Nd2Fe14B magnets.
Strengths
- Their power is maintained, and after approximately ten years it decreases only by ~1% (according to research),
- They maintain their magnetic properties even under external field action,
- Thanks to the smooth finish, the surface of nickel, gold-plated, or silver gives an clean appearance,
- Neodymium magnets generate maximum magnetic induction on a contact point, which ensures high operational effectiveness,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Thanks to modularity in forming and the ability to customize to individual projects,
- Huge importance in innovative solutions – they are utilized in magnetic memories, electromotive mechanisms, advanced medical instruments, as well as other advanced devices.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Cons
- Brittleness is one of their disadvantages. Upon strong impact they can break. We advise keeping them in a strong case, which not only secures them against impacts but also raises their durability
- Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- They rust in a humid environment - during use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- Due to limitations in realizing nuts and complex forms in magnets, we propose using casing - magnetic holder.
- Potential hazard to health – tiny shards of magnets are risky, if swallowed, which is particularly important in the context of child health protection. Additionally, small elements of these products can complicate diagnosis medical when they are in the body.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which can limit application in large quantities
Pull force analysis
Breakaway strength of the magnet in ideal conditions – what contributes to it?
- using a plate made of high-permeability steel, acting as a magnetic yoke
- possessing a thickness of at least 10 mm to avoid saturation
- characterized by lack of roughness
- under conditions of ideal adhesion (surface-to-surface)
- for force acting at a right angle (pull-off, not shear)
- at ambient temperature room level
Magnet lifting force in use – key factors
- Gap between magnet and steel – even a fraction of a millimeter of distance (caused e.g. by varnish or dirt) diminishes the magnet efficiency, often by half at just 0.5 mm.
- Load vector – maximum parameter is obtained only during pulling at a 90° angle. The force required to slide of the magnet along the surface is standardly several times smaller (approx. 1/5 of the lifting capacity).
- Steel thickness – insufficiently thick steel causes magnetic saturation, causing part of the flux to be lost into the air.
- Chemical composition of the base – low-carbon steel attracts best. Alloy admixtures lower magnetic properties and lifting capacity.
- Surface condition – smooth surfaces ensure maximum contact, which improves field saturation. Rough surfaces weaken the grip.
- Thermal conditions – NdFeB sinters have a negative temperature coefficient. At higher temperatures they are weaker, and at low temperatures gain strength (up to a certain limit).
Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, however under parallel forces the lifting capacity is smaller. In addition, even a small distance between the magnet and the plate reduces the holding force.
Precautions when working with neodymium magnets
Danger to pacemakers
For implant holders: Strong magnetic fields affect medical devices. Keep at least 30 cm distance or request help to work with the magnets.
Conscious usage
Handle with care. Rare earth magnets attract from a long distance and connect with massive power, often faster than you can move away.
Magnets are brittle
Neodymium magnets are sintered ceramics, meaning they are prone to chipping. Collision of two magnets will cause them breaking into small pieces.
GPS and phone interference
GPS units and smartphones are extremely susceptible to magnetic fields. Close proximity with a strong magnet can ruin the sensors in your phone.
Adults only
Strictly keep magnets away from children. Ingestion danger is significant, and the consequences of magnets connecting inside the body are tragic.
Data carriers
Device Safety: Neodymium magnets can damage payment cards and delicate electronics (pacemakers, hearing aids, mechanical watches).
Crushing risk
Protect your hands. Two powerful magnets will snap together instantly with a force of massive weight, crushing everything in their path. Exercise extreme caution!
Do not overheat magnets
Do not overheat. NdFeB magnets are sensitive to temperature. If you require resistance above 80°C, inquire about special high-temperature series (H, SH, UH).
Nickel allergy
Some people experience a sensitization to Ni, which is the common plating for neodymium magnets. Frequent touching can result in a rash. It is best to use safety gloves.
Dust explosion hazard
Dust created during cutting of magnets is self-igniting. Avoid drilling into magnets without proper cooling and knowledge.
