tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" in our store are available for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid enclosure are ideally suited for use in difficult, demanding weather conditions, including during rain and snow read...

magnetic holders

Holders with magnets can be used to improve production, underwater exploration, or locating meteors made of ore more information...

Shipping is shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 17x17x3 / N38 - lamellar magnet

lamellar magnet

Catalog no 020124

GTIN: 5906301811305

5

length [±0,1 mm]

17 mm

Width [±0,1 mm]

17 mm

Height [±0,1 mm]

3 mm

Weight

6.5 g

Magnetization Direction

↑ axial

Load capacity

4.03 kg / 39.52 N

Magnetic Induction

187.48 mT

Coating

[NiCuNi] nickel

4.71 with VAT / pcs + price for transport

3.83 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.83 ZŁ
4.71 ZŁ
price from 200 pcs
3.60 ZŁ
4.43 ZŁ
price from 700 pcs
3.37 ZŁ
4.15 ZŁ

Not sure about your choice?

Call us +48 888 99 98 98 otherwise send us a note through form the contact form page.
Strength as well as appearance of magnets can be tested on our force calculator.

Orders submitted before 14:00 will be dispatched today!

MPL 17x17x3 / N38 - lamellar magnet

Specification/characteristics MPL 17x17x3 / N38 - lamellar magnet
properties
values
Cat. no.
020124
GTIN
5906301811305
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
17 mm [±0,1 mm]
Width
17 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
6.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
4.03 kg / 39.52 N
Magnetic Induction ~ ?
187.48 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 17x17x3 / N38 are magnets made from neodymium in a flat form. They are appreciated for their extremely powerful magnetic properties, which surpass traditional iron magnets.
Thanks to their high strength, flat magnets are frequently used in devices that require exceptional adhesion.
The standard temperature resistance of flat magnets is 80 °C, but with larger dimensions, this value grows.
In addition, flat magnets commonly have special coatings applied to their surfaces, such as nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet named MPL 17x17x3 / N38 and a lifting capacity of 4.03 kg with a weight of a mere 6.5 grams, making it the perfect choice for projects needing a flat magnet.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which cause them being an ideal choice for various uses:
Contact surface: Due to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often used in various devices, such as sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: The flat form's flat shape makes mounting, especially when it is necessary to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets gives the possibility designers a lot of flexibility in placing them in structures, which is more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, minimizing the risk of sliding or rotating. It’s important to keep in mind that the optimal shape of the magnet depends on the given use and requirements. In certain cases, other shapes, like cylindrical or spherical, are a better choice.
Attracted by magnets are objects made of ferromagnetic materials, such as iron, nickel, cobalt and special alloys of ferromagnetic metals. Moreover, magnets may weaker affect some other metals, such as steel. Magnets are used in many fields.
Magnets work thanks to the properties of the magnetic field, which is generated by the movement of electric charges within their material. The magnetic field of magnets creates attractive interactions, which attract objects made of nickel or other magnetic materials.

Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, act repelling on each other.
Due to these properties, magnets are often used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them ideal for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its size and the material it is made of.
Magnets do not attract plastic, glass items, wood or precious stones. Moreover, magnets do not affect certain metals, such as copper, aluminum, copper, aluminum, and gold. These metals, although they are conductors of electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.
A neodymium magnet with classification N52 and N50 is a strong and powerful metallic component designed as a plate, that offers strong holding power and universal application. Very good price, availability, ruggedness and versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetism, neodymium magnets have these key benefits:

  • They retain their attractive force for around 10 years – the loss is just ~1% (in theory),
  • Their ability to resist magnetic interference from external fields is impressive,
  • By applying a bright layer of nickel, the element gains a sleek look,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their functional possibilities,
  • Wide application in new technology industries – they find application in data storage devices, electric motors, diagnostic apparatus or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them useful in compact constructions

Disadvantages of NdFeB magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment. If exposed to rain, we recommend using waterproof magnets, such as those made of non-metallic materials,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
  • Possible threat from tiny pieces may arise, when consumed by mistake, which is important in the health of young users. Moreover, miniature parts from these magnets have the potential to complicate medical imaging if inside the body,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given holding capacity of the magnet corresponds to the highest holding force, assessed under optimal conditions, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • in normal thermal conditions

Practical lifting capacity: influencing factors

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.

Handle with Care: Neodymium Magnets

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

  Neodymium magnets should not be in the vicinity youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are extremely delicate, they easily fall apart as well as can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

If the joining of neodymium magnets is not under control, at that time they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely strongly.

Be careful!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98