UMP 97x40 [M8+M10] GW F300 kg / N38 - search holder
search holder
Catalog no 210337
GTIN: 5906301813965
Diameter Ø [±0,1 mm]
97 mm
Height [±0,1 mm]
40 mm
Weight
2200 g
Load capacity
380 kg / 3726.53 N
Coating
[NiCuNi] nickel
300.00 ZŁ with VAT / pcs + price for transport
243.90 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us
+48 22 499 98 98
if you prefer drop us a message by means of
contact form
the contact page.
Lifting power along with form of neodymium magnets can be calculated using our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
UMP 97x40 [M8+M10] GW F300 kg / N38 - search holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- Their power is maintained, and after around 10 years, it drops only by ~1% (theoretically),
- Their ability to resist magnetic interference from external fields is impressive,
- Because of the lustrous layer of gold, the component looks visually appealing,
- Magnetic induction on the surface of these magnets is very strong,
- With the right combination of magnetic alloys, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
- Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their usage potential,
- Significant impact in advanced technical fields – they serve a purpose in hard drives, electric drives, medical equipment and technologically developed systems,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall durability,
- They lose field intensity at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a damp environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of plastic,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
- Potential hazard from tiny pieces may arise, especially if swallowed, which is significant in the family environments. Additionally, miniature parts from these assemblies have the potential to disrupt scanning once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Magnetic strength at its maximum – what it depends on?
The given strength of the magnet corresponds to the optimal strength, assessed in ideal conditions, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with zero air gap
- under perpendicular detachment force
- in normal thermal conditions
Determinants of practical lifting force of a magnet
The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of optimal thickness, under perpendicular forces, however under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.
We Recommend Caution with Neodymium Magnets
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a serious pressure or a fracture.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnetic are extremely fragile, leading to breaking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets should not be in the vicinity children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Be careful!
So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very powerful neodymium magnets?.
