tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all "neodymium magnets" on our website are available for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase powerful magnet? Holders with magnets in airtight, solid steel casing are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow see more...

magnetic holders

Magnetic holders can be used to facilitate production processes, underwater discoveries, or searching for space rocks from gold see...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 97x40 [M8+M10] GW F300 kg / N38 - search holder

search holder

Catalog no 210337

GTIN: 5906301813965

5

Diameter Ø [±0,1 mm]

97 mm

Height [±0,1 mm]

40 mm

Weight

2200 g

Load capacity

380 kg / 3726.53 N

Coating

[NiCuNi] nickel

300.00 with VAT / pcs + price for transport

243.90 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
243.90 ZŁ
300.00 ZŁ
price from 5 pcs
229.27 ZŁ
282.00 ZŁ
price from 15 pcs
214.63 ZŁ
264.00 ZŁ

Want to talk magnets?

Give us a call +48 888 99 98 98 if you prefer let us know via contact form our website.
Strength along with appearance of magnetic components can be verified on our power calculator.

Orders submitted before 14:00 will be dispatched today!

UMP 97x40 [M8+M10] GW F300 kg / N38 - search holder

Specification/characteristics UMP 97x40 [M8+M10] GW F300 kg / N38 - search holder
properties
values
Cat. no.
210337
GTIN
5906301813965
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
97 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
2200 g [±0,1 mm]
Load capacity ~ ?
380 kg / 3726.53 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

For exploring rivers and lakes, we recommend UMP 97x40 [M8+M10] GW F300 kg / N38, which is exceptionally strong and has an impressive magnetic pulling force of approximately ~380 kg. This model is perfect for locating metal objects at the bottom of water bodies.
Magnetic holders are ideal for retrieving in water due to their strong attraction capability. UMP 97x40 [M8+M10] GW F300 kg / N38 weighing 2200 grams with a pulling force of ~380 kg is a perfect solution for finding lost treasures.
When choosing a magnetic holder for underwater searches, you should pay attention to the number of Gauss or Tesla value, which determines the attraction strength. UMP 97x40 [M8+M10] GW F300 kg / N38 has a pulling force of approximately ~380 kg, making it a powerful tool for recovering heavier items. Remember that the maximum strength is achieved with the top attachment, while the side attachment offers only 10%-25% of that power.
The sideways force of a magnetic holder is typically lower than the adhesive force because it depends on the fraction of the magnetic field that interacts with the metal surface. In the case of UMP 97x40 [M8+M10] GW F300 kg / N38 with a lifting capacity of ~380 kg, maximum power are achieved with the top attachment, while the side holder offers only 10%-25% of the declared force.
he attraction force was measured under laboratory conditions, using a smooth S235 low-carbon steel plate with a thickness of 10 mm, with the application of pulling force in a perpendicular manner. In a situation where the sliding occurs, the magnet's lifting capacity can be 5 times lower! Any gap between the magnet and the plate can cause a reduction in the attraction force.
magnetic holder strength F200 GOLD F300 GOLD

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous pulling force, neodymium magnets offer the following advantages:

  • Their power is maintained, and after approximately ten years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a mirror-like silver surface provides a eye-catching finish,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which broadens their application range,
  • Key role in modern technologies – they are utilized in hard drives, electric motors, clinical machines and sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which allows for use in small systems

Disadvantages of magnetic elements:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall resistance,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
  • Possible threat due to small fragments may arise, in case of ingestion, which is notable in the protection of children. It should also be noted that small elements from these assemblies may complicate medical imaging once in the system,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Magnetic strength at its maximum – what contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, assessed in the best circumstances, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Practical lifting capacity: influencing factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, in contrast under shearing force the holding force is lower. In addition, even a slight gap {between} the magnet and the plate reduces the load capacity.

Notes with Neodymium Magnets

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will jump and also contact together within a distance of several to around 10 cm from each other.

Magnets made of neodymium are highly delicate, they easily fall apart and can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Pay attention!

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98