tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. All magnesy in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to purchase powerful magnet? Holders with magnets in airtight, solid enclosure are excellent for use in variable and difficult climate conditions, including during snow and rain see more...

magnets with holders

Magnetic holders can be applied to enhance production, exploring underwater areas, or locating meteors made of ore read...

Order always shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 97x40 [M8+M10] GW F300 kg / N38 - search holder

search holder

Catalog no 210337

GTIN: 5906301813965

5

Diameter Ø [±0,1 mm]

97 mm

Height [±0,1 mm]

40 mm

Weight

2200 g

Load capacity

380 kg / 3726.53 N

Coating

[NiCuNi] nickel

300.00 with VAT / pcs + price for transport

243.90 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
243.90 ZŁ
300.00 ZŁ
price from 5 pcs
229.27 ZŁ
282.00 ZŁ
price from 11 pcs
214.63 ZŁ
264.00 ZŁ

Want to talk magnets?

Call us +48 888 99 98 98 or contact us through contact form the contact section.
Strength as well as appearance of neodymium magnets can be calculated using our magnetic mass calculator.

Same-day processing for orders placed before 14:00.

UMP 97x40 [M8+M10] GW F300 kg / N38 - search holder

Specification/characteristics UMP 97x40 [M8+M10] GW F300 kg / N38 - search holder
properties
values
Cat. no.
210337
GTIN
5906301813965
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
97 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
2200 g [±0,1 mm]
Load capacity ~ ?
380 kg / 3726.53 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

For exploring rivers and lakes, we recommend UMP 97x40 [M8+M10] GW F300 kg / N38, which is exceptionally strong and has an impressive magnetic pulling force of approximately ~380 kg. This model is perfect for locating metal objects at the bottom of water bodies.
Magnetic holders are ideal for retrieving in water due to their high lifting force. UMP 97x40 [M8+M10] GW F300 kg / N38 weighing 2200 grams with a pulling force of ~380 kg is a perfect solution for finding metallic findings.
When choosing a magnetic holder for water exploration, you should pay attention to the number of Gauss or Tesla value, which determines the lifting force. UMP 97x40 [M8+M10] GW F300 kg / N38 has a pulling force of approximately ~380 kg, making it a powerful tool for retrieving heavier items. Remember that the full power is achieved with the upper holder, while the side attachment offers only 10%-25% of that power.
The sliding force of a magnet is typically lower than the perpendicular force because it depends on the fraction of the magnetic field that interacts with the metal surface. In the case of UMP 97x40 [M8+M10] GW F300 kg / N38 with a lifting capacity of ~380 kg, maximum power are achieved with the upper holder, while the side holder offers only one-fourth to one-quarter of the declared force.
he attraction force was measured under laboratory conditions, using a smooth S235 low-carbon steel plate with a thickness of 10 mm, with the application of lifting force in a perpendicular manner. In a situation where the sliding occurs, the magnet's attraction force can be 5x times lower! Any gap between the magnet and the plate can cause a reduction in the attraction force.
magnetic pot strength F200 GOLD F300 GOLD

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable power, neodymium magnets have these key benefits:

  • They have constant strength, and over more than ten years their attraction force decreases symbolically – ~1% (according to theory),
  • They remain magnetized despite exposure to magnetic noise,
  • By applying a shiny layer of gold, the element gains a clean look,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
  • Important function in new technology industries – they are used in data storage devices, rotating machines, medical equipment as well as technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture while also enhances its overall durability,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment, especially when used outside, we recommend using sealed magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Safety concern due to small fragments may arise, when consumed by mistake, which is significant in the context of child safety. Moreover, tiny components from these magnets have the potential to complicate medical imaging after being swallowed,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Handle with Care: Neodymium Magnets

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnetic are highly susceptible to damage, leading to shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Safety rules!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98