tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. All magnesy in our store are in stock for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase powerful neodymium magnet? Magnet holders in airtight and durable enclosure are perfect for use in variable and difficult weather conditions, including snow and rain see more...

magnets with holders

Magnetic holders can be applied to facilitate production, underwater discoveries, or finding meteors from gold more...

We promise to ship your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMH 32x8x46 [M6] / N38 - magnetic holder with hook

magnetic holder with hook

Catalog no 310427

GTIN: 5906301814566

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

46 mm

Height [±0,1 mm]

8 mm

Weight

53 g

Magnetization Direction

↑ axial

Load capacity

38 kg / 372.65 N

Coating

[NiCuNi] nickel

22.14 with VAT / pcs + price for transport

18.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
18.00 ZŁ
22.14 ZŁ
price from 350 pcs
16.92 ZŁ
20.81 ZŁ
price from 800 pcs
15.84 ZŁ
19.48 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

UMH 32x8x46 [M6] / N38 - magnetic holder with hook

Specification/characteristics UMH 32x8x46 [M6] / N38 - magnetic holder with hook
properties
values
Cat. no.
310427
GTIN
5906301814566
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
46 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
53 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
38 kg / 372.65 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic sources,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Wide application in advanced technologically fields – are used in hard drives, electric drive mechanisms, medical devices or very modern machines.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets pose a threat, when accidentally ingested, which becomes significant in the context of child safety. It's also worth noting that small elements of these devices can complicate diagnosis when they are in the body.

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets bounce and clash mutually within a distance of several to around 10 cm from each other.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 Keep neodymium magnets far from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Magnets made of neodymium are extremely fragile, leading to shattering.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Be careful!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98