e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are in stock for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to purchase strong magnet? Holders with magnets in airtight and durable enclosure are perfect for use in variable and difficult weather conditions, including snow and rain see more...

magnets with holders

Holders with magnets can be applied to improve production, underwater discoveries, or finding space rocks made of metal read...

Enjoy delivery of your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 38x3.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010062

GTIN: 5906301810612

5

Diameter Ø [±0,1 mm]

38 mm

Height [±0,1 mm]

3.5 mm

Weight

29.77 g

Magnetization Direction

↑ axial

Load capacity

7.35 kg / 72.08 N

Magnetic Induction

112.31 mT

Coating

[NiCuNi] nickel

15.83 with VAT / pcs + price for transport

12.87 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
12.87 ZŁ
15.83 ZŁ
price from 50 pcs
12.10 ZŁ
14.88 ZŁ
price from 200 pcs
11.33 ZŁ
13.93 ZŁ

Need advice?

Call us +48 888 99 98 98 alternatively drop us a message using our online form the contact page.
Parameters along with appearance of a magnet can be reviewed using our magnetic mass calculator.

Same-day shipping for orders placed before 14:00.

MW 38x3.5 / N38 - cylindrical magnet

Specification/characteristics MW 38x3.5 / N38 - cylindrical magnet
properties
values
Cat. no.
010062
GTIN
5906301810612
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
38 mm [±0,1 mm]
Height
3.5 mm [±0,1 mm]
Weight
29.77 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
7.35 kg / 72.08 N
Magnetic Induction ~ ?
112.31 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 38x3.5 / N38 are magnets created of neodymium in a cylinder form. They are known for their extremely powerful magnetic properties, which outperform ordinary ferrite magnets. Thanks to their strength, they are frequently employed in products that need strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet with the designation MW 38x3.5 / N38 and a magnetic force 7.35 kg has a weight of only 29.77 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of gold to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to check the site for the latest information as well as promotions, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are useful in many applications, they can also pose certain risk. Because of their strong magnetic power, they can attract metallic objects with significant force, which can lead to damaging skin or other surfaces, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then forming and thermal processing. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as gold, to protect them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A cylindrical neodymium magnet N52 and N50 is a strong and powerful magnetic product designed as a cylinder, providing strong holding power and broad usability. Very good price, 24h delivery, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They retain their attractive force for nearly ten years – the drop is just ~1% (in theory),
  • They show exceptional resistance to demagnetization from external magnetic fields,
  • In other words, due to the metallic gold coating, the magnet obtains an stylish appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their application range,
  • Wide application in advanced technical fields – they find application in computer drives, electric motors, clinical machines along with sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally increases its overall durability,
  • They lose strength at elevated temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment – during outdoor use, we recommend using encapsulated magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
  • Possible threat due to small fragments may arise, when consumed by mistake, which is notable in the context of child safety. It should also be noted that small elements from these magnets have the potential to complicate medical imaging when ingested,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Detachment force of the magnet in optimal conditionswhat it depends on?

The given pulling force of the magnet represents the maximum force, determined in a perfect environment, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • at room temperature

Lifting capacity in real conditions – factors

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the holding force is lower. In addition, even a small distance {between} the magnet and the plate lowers the holding force.

Safety Guidelines with Neodymium Magnets

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.

Magnets made of neodymium are fragile and can easily break and get damaged.

Neodymium magnets are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

  Neodymium magnets should not be in the vicinity youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Safety precautions!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98