e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are available for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in airtight, solid enclosure are ideally suited for use in difficult weather conditions, including snow and rain read...

magnetic holders

Magnetic holders can be applied to enhance manufacturing, underwater exploration, or finding space rocks from gold more...

Shipping is always shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 38x3.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010062

GTIN: 5906301810612

5

Diameter Ø [±0,1 mm]

38 mm

Height [±0,1 mm]

3.5 mm

Weight

29.77 g

Magnetization Direction

↑ axial

Load capacity

7.35 kg / 72.08 N

Magnetic Induction

112.31 mT

Coating

[NiCuNi] nickel

15.83 with VAT / pcs + price for transport

12.87 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
12.87 ZŁ
15.83 ZŁ
price from 50 pcs
12.10 ZŁ
14.88 ZŁ
price from 200 pcs
11.33 ZŁ
13.93 ZŁ

Can't decide what to choose?

Call us now +48 888 99 98 98 if you prefer let us know via our online form our website.
Weight and form of a neodymium magnet can be reviewed with our modular calculator.

Same-day shipping for orders placed before 14:00.

MW 38x3.5 / N38 - cylindrical magnet

Specification/characteristics MW 38x3.5 / N38 - cylindrical magnet
properties
values
Cat. no.
010062
GTIN
5906301810612
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
38 mm [±0,1 mm]
Height
3.5 mm [±0,1 mm]
Weight
29.77 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
7.35 kg / 72.08 N
Magnetic Induction ~ ?
112.31 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 38x3.5 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which exceed traditional iron magnets. Because of their power, they are often employed in devices that require powerful holding. The typical temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet named MW 38x3.5 / N38 and a magnetic force 7.35 kg has a weight of only 29.77 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the latest information and offers, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are very useful in various applications, they can also constitute certain dangers. Because of their strong magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin or other surfaces, especially hands. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strongest available magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with other metals and then forming and thermal processing. Their amazing magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as silver, to protect them from external factors and prolong their durability. Temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A neodymium magnet in classes N50 and N52 is a powerful and strong metallic component in the form of a cylinder, featuring high force and universal applicability. Very good price, fast shipping, durability and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their immense magnetic power, neodymium magnets offer the following advantages:

  • They have unchanged lifting capacity, and over more than 10 years their performance decreases symbolically – ~1% (in testing),
  • They show strong resistance to demagnetization from outside magnetic sources,
  • The use of a mirror-like nickel surface provides a refined finish,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for accurate shaping or adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Important function in new technology industries – they find application in computer drives, electromechanical systems, healthcare devices as well as high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall durability,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can rust. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
  • Possible threat due to small fragments may arise, especially if swallowed, which is notable in the family environments. Furthermore, small elements from these assemblies have the potential to hinder health screening if inside the body,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum lifting force for a neodymium magnet – what contributes to it?

The given pulling force of the magnet represents the maximum force, determined in a perfect environment, namely:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • with vertical force applied
  • at room temperature

What influences lifting capacity in practice

In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under parallel forces the load capacity is reduced by as much as 5 times. In addition, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.

Handle with Care: Neodymium Magnets

Neodymium magnetic are highly susceptible to damage, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.

Caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98