e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are available for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnets for searching F400 GOLD

Where to buy powerful neodymium magnet? Magnet holders in solid and airtight steel casing are perfect for use in difficult weather conditions, including during rain and snow read...

magnetic holders

Magnetic holders can be applied to improve production processes, underwater exploration, or searching for space rocks from gold more information...

Shipping is shipped on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

UMH 25x8x45 [M5] / N38 - magnetic holder with hook

magnetic holder with hook

Catalog no 310426

GTIN: 5906301814559

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

45 mm

Height [±0,1 mm]

8 mm

Weight

33 g

Magnetization Direction

↑ axial

Load capacity

25 kg / 245.17 N

Coating

[NiCuNi] nickel

14.49 with VAT / pcs + price for transport

11.78 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
11.78 ZŁ
14.49 ZŁ
price from 30 pcs
11.07 ZŁ
13.62 ZŁ
price from 70 pcs
10.37 ZŁ
12.75 ZŁ

Need help making a decision?

Contact us by phone +48 888 99 98 98 otherwise send us a note by means of form the contact form page.
Parameters as well as shape of neodymium magnets can be estimated with our online calculation tool.

Same-day processing for orders placed before 14:00.

UMH 25x8x45 [M5] / N38 - magnetic holder with hook

Specification/characteristics UMH 25x8x45 [M5] / N38 - magnetic holder with hook
properties
values
Cat. no.
310426
GTIN
5906301814559
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
45 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
33 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
25 kg / 245.17 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

They serve to create mobile suspension points without drilling holes. In workshops and garages, they are perfect for guiding cables or hanging lighting.
Yes, the hook is screwed into a bushing with a metric thread (e.g., M4, M5, M6). Thanks to this, one magnet can perform many functions.
Nominal lifting capacity (e.g. 25 kg) applies to perpendicular (vertical) force when mounted on a ceiling. When mounting on a wall (vertically), the holding force is much lower due to shear force (the magnet may slide).
The cup acts as a magnetic yoke, boosting the neodymium's action. A bare magnet could crack upon sudden contact with metal.
The anti-corrosion coating is sufficient for applications in shops, offices, and dry warehouses. If you plan outdoor installation, protect the holder with additional paint or grease
On pipes or rounded surfaces, the holding force is much smaller because the magnet only touches linearly. To improve adhesion, clean the mounting area of dirt and loose rust

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • Their magnetic field remains stable, and after approximately ten years, it drops only by ~1% (according to research),
  • They remain magnetized despite exposure to magnetic surroundings,
  • In other words, due to the shiny silver coating, the magnet obtains an professional appearance,
  • Magnetic induction on the surface of these magnets is notably high,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Important function in advanced technical fields – they are utilized in computer drives, electromechanical systems, clinical machines and high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall strength,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment, especially when used outside, we recommend using waterproof magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
  • Health risk due to small fragments may arise, when consumed by mistake, which is crucial in the context of child safety. Additionally, tiny components from these magnets have the potential to complicate medical imaging after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting force for a neodymium magnet – what it depends on?

The given strength of the magnet means the optimal strength, determined in the best circumstances, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.

Precautions

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets jump and also touch each other mutually within a radius of several to almost 10 cm from each other.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are characterized by being fragile, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Exercise caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98