tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to purchase very strong neodymium magnet? Magnetic holders in solid and airtight steel casing are excellent for use in challenging climate conditions, including during snow and rain more...

magnetic holders

Magnetic holders can be applied to facilitate manufacturing, underwater discoveries, or locating meteorites made of ore check...

Shipping is always shipped on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMH 25x8x45 [M5] / N38 - magnetic holder with hook

magnetic holder with hook

Catalog no 310426

GTIN: 5906301814559

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

45 mm

Height [±0,1 mm]

8 mm

Weight

33 g

Magnetization Direction

↑ axial

Load capacity

25 kg / 245.17 N

Coating

[NiCuNi] nickel

14.49 with VAT / pcs + price for transport

11.78 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
11.78 ZŁ
14.49 ZŁ
price from 30 pcs
11.07 ZŁ
13.62 ZŁ
price from 70 pcs
10.37 ZŁ
12.75 ZŁ

Do you have purchase concerns?

Pick up the phone and ask +48 22 499 98 98 if you prefer get in touch through our online form the contact page.
Strength and shape of magnets can be analyzed using our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

UMH 25x8x45 [M5] / N38 - magnetic holder with hook

Specification/characteristics UMH 25x8x45 [M5] / N38 - magnetic holder with hook
properties
values
Cat. no.
310426
GTIN
5906301814559
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
45 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
33 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
25 kg / 245.17 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They retain their attractive force for nearly 10 years – the loss is just ~1% (in theory),
  • They are highly resistant to demagnetization caused by external field interference,
  • Because of the reflective layer of silver, the component looks high-end,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in new technology industries – they are used in hard drives, electric motors, diagnostic apparatus and sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in miniature devices

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time enhances its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using sealed magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
  • Possible threat from tiny pieces may arise, especially if swallowed, which is important in the context of child safety. Furthermore, small elements from these devices have the potential to hinder health screening when ingested,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given strength of the magnet represents the optimal strength, measured under optimal conditions, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed with the use of a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under parallel forces the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnetic are particularly delicate, resulting in their breakage.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or alternatively crumble with uncontrolled connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Warning!

To illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98