tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. Practically all magnesy neodymowe in our store are available for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnet for searching F200 GOLD

Where to purchase strong magnet? Holders with magnets in airtight and durable steel casing are perfect for use in variable and difficult weather conditions, including during rain and snow more...

magnetic holders

Magnetic holders can be used to enhance production, underwater exploration, or locating space rocks made of metal read...

Enjoy delivery of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships in 2 days

UMGW 32x18x8 [M6] GW / N38 - magnetic holder internal thread

magnetic holder internal thread

Catalog no 180318

GTIN: 5906301813743

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

18 mm

Height [±0,1 mm]

8 mm

Weight

42 g

Load capacity

34 kg / 333.43 N

15.22 with VAT / pcs + price for transport

12.37 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
12.37 ZŁ
15.22 ZŁ
price from 30 pcs
11.63 ZŁ
14.30 ZŁ
price from 130 pcs
10.89 ZŁ
13.39 ZŁ

Hunting for a discount?

Call us +48 22 499 98 98 or send us a note via contact form our website.
Parameters along with form of magnets can be reviewed on our magnetic mass calculator.

Same-day processing for orders placed before 14:00.

UMGW 32x18x8 [M6] GW / N38 - magnetic holder internal thread

Specification/characteristics UMGW 32x18x8 [M6] GW / N38 - magnetic holder internal thread
properties
values
Cat. no.
180318
GTIN
5906301813743
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
18 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
42 g [±0,1 mm]
Load capacity ~ ?
34 kg / 333.43 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The steel cup acts as a yoke, concentrating the magnetic flux and increasing lifting capacity. The metal cover secures the magnet against mechanical damage. The threaded hole allows quick mounting of a hook, handle, or screw.
Be careful not to screw the bolt too deep. Neodymium magnets are brittle, and direct pressure from the bolt can cause them to crack. It is worth securing the thread with glue if the connection is to be permanent.
They are used to mount sensors, lamps, nameplates, and covers. They allow mounting without drilling in the steel substrate. In the workshop, they can serve as mounting points for tools or jigs.
Standard coating protects against moisture in indoor conditions. For outdoor applications, we recommend additional protection or rubber-coated versions. The neodymium magnet inside is also nickel-plated.
Nominal lifting capacity (for this model approx. 34 kg) is measured under ideal conditions: perpendicular detachment from thick steel (10mm+). Air gap (rust, paint) drastically reduces power. We always recommend choosing a magnet with a reserve of force.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their power is maintained, and after around 10 years, it drops only by ~1% (according to research),
  • They remain magnetized despite exposure to magnetic surroundings,
  • In other words, due to the metallic gold coating, the magnet obtains an stylish appearance,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • With the option for customized forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Important function in new technology industries – they are used in computer drives, rotating machines, medical equipment as well as sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in small systems

Disadvantages of neodymium magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also strengthens its overall robustness,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of rubber,
  • Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is important in the protection of children. Furthermore, small elements from these assemblies may complicate medical imaging once in the system,
  • Due to expensive raw materials, their cost is relatively high,

Maximum lifting force for a neodymium magnet – what it depends on?

The given lifting capacity of the magnet represents the maximum lifting force, measured in the best circumstances, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Practical lifting capacity: influencing factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, however under attempts to slide the magnet the holding force is lower. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the load capacity.

Exercise Caution with Neodymium Magnets

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when they attract. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnetic are delicate as well as can easily break and shatter.

Magnets made of neodymium are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Be careful!

To show why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98