e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. All magnesy in our store are available for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for searching F300 GOLD

Where to buy strong magnet? Holders with magnets in airtight, solid steel casing are excellent for use in difficult weather, including during rain and snow see more...

magnets with holders

Holders with magnets can be used to improve manufacturing, underwater discoveries, or searching for meteorites from gold see...

We promise to ship your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGW 32x18x8 [M6] GW / N38 - magnetic holder internal thread

magnetic holder internal thread

Catalog no 180318

GTIN: 5906301813743

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

18 mm

Height [±0,1 mm]

8 mm

Weight

42 g

Load capacity

34 kg / 333.43 N

15.22 with VAT / pcs + price for transport

12.37 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
12.37 ZŁ
15.22 ZŁ
price from 30 pcs
11.63 ZŁ
14.30 ZŁ
price from 130 pcs
10.89 ZŁ
13.39 ZŁ

Need advice?

Give us a call +48 22 499 98 98 or contact us using form the contact form page.
Force and structure of magnets can be calculated on our our magnetic calculator.

Order by 14:00 and we’ll ship today!

UMGW 32x18x8 [M6] GW / N38 - magnetic holder internal thread

Specification/characteristics UMGW 32x18x8 [M6] GW / N38 - magnetic holder internal thread
properties
values
Cat. no.
180318
GTIN
5906301813743
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
18 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
42 g [±0,1 mm]
Load capacity ~ ?
34 kg / 333.43 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic holders featuring internal thread can be versatile accessories, used in industrial and everyday uses, such as construction. They consist of a neodymium magnet, usually NdFeB, embedded in a metal shell, coated with Zn layer to prevent rusting. The internal thread, ranging from M3 to M10, enables mounting bolts, which simplifies installation of various items, such as signs, instruments, or lights. They operate via a strong magnetic field, which concentrates at the mounting point, providing load capacity from 1.3 kg to 60 kg, depending on mount size. These are particularly helpful in vehicle manufacturing, e.g. for attaching car body components, as well as in marketing, for hanging banners. Some models have a rubber coating, e.g. in black or yellow, helping prevent surface damage and increases resistance to dampness. Advantages cover great strength, simple mounting thanks to the thread, and the ability to transport heavy ferromagnetic objects. However, the grip strength depends on surface thickness, type of steel, or distance between the holder and the component. It’s important to avoid impacts, as NdFeB magnets are brittle, and overtightening the screw may be dangerous. Moreover, a magnetic zone may interfere with electronics, like phones or data carriers, therefore mounts should be stored away from those devices. Choosing mounts from trusted suppliers is advised, to ensure high quality and safe use during operation.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They have constant strength, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • They remain magnetized despite exposure to magnetic surroundings,
  • By applying a shiny layer of silver, the element gains a modern look,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their application range,
  • Important function in modern technologies – they find application in data storage devices, electric motors, clinical machines as well as other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of NdFeB magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall durability,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
  • Potential hazard related to magnet particles may arise, especially if swallowed, which is crucial in the context of child safety. Furthermore, tiny components from these products can interfere with diagnostics when ingested,
  • Due to a complex production process, their cost is considerably higher,

Maximum lifting force for a neodymium magnet – what affects it?

The given strength of the magnet means the optimal strength, assessed under optimal conditions, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • at room temperature

What influences lifting capacity in practice

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, however under parallel forces the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate decreases the lifting capacity.

Exercise Caution with Neodymium Magnets

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are highly susceptible to damage, leading to breaking.

Neodymium magnetic are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets bounce and also touch each other mutually within a distance of several to around 10 cm from each other.

 It is essential to maintain neodymium magnets away from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Safety precautions!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98