tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" in our store are in stock for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnet for searching F300 GOLD

Where to purchase strong magnet? Magnet holders in solid and airtight enclosure are perfect for use in variable and difficult weather, including snow and rain see...

magnets with holders

Magnetic holders can be applied to enhance production processes, exploring underwater areas, or searching for space rocks from gold more...

Shipping is shipped if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

NCM 30x13.5x5 / N38 - channel magnetic holder

channel magnetic holder

Catalog no 360488

GTIN: 5906301814870

0

Diameter Ø [±0,1 mm]

30 mm

Height [±0,1 mm]

13.5 mm

Weight

14 g

Magnetization Direction

↑ axial

Load capacity

16 kg / 156.91 N

Coating

[NiCuNi] nickel

9.40 with VAT / pcs + price for transport

7.64 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
7.64 ZŁ
9.40 ZŁ
price from 100 pcs
7.18 ZŁ
8.83 ZŁ
price from 200 pcs
6.72 ZŁ
8.27 ZŁ

Need help making a decision?

Give us a call +48 22 499 98 98 or get in touch using contact form the contact form page.
Parameters and structure of neodymium magnets can be estimated using our online calculation tool.

Same-day processing for orders placed before 14:00.

NCM 30x13.5x5 / N38 - channel magnetic holder

Specification/characteristics NCM 30x13.5x5 / N38 - channel magnetic holder
properties
values
Cat. no.
360488
GTIN
5906301814870
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
30 mm [±0,1 mm]
Height
13.5 mm [±0,1 mm]
Weight
14 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
16 kg / 156.91 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Thanks to two poles on one plane, this holder holds much stronger than a regular block magnet. They feature high lifting capacity and impact resistance.
These holders usually have two countersunk mounting holes, allowing stable screwing. They can be screwed to wood, walls, aluminum profiles, or plastics.
Thanks to closing the magnetic field by steel walls, holding force is concentrated and very large. Even a small channel holder can surprise with its power.
Magnets are shielded on three sides by steel, increasing their life. Standard versions work up to 80°C, but are resistant to vibrations.
The product is intended mainly for indoor use. With constant contact with water, corrosion may appear, so we do not recommend them for rain without additional protection.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior power, neodymium magnets have these key benefits:

  • They have stable power, and over more than 10 years their attraction force decreases symbolically – ~1% (in testing),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • Thanks to the polished finish and gold coating, they have an elegant appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
  • Significant impact in modern technologies – they are used in computer drives, electric motors, clinical machines or even technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall durability,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of synthetic coating for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
  • Health risk related to magnet particles may arise, when consumed by mistake, which is crucial in the family environments. Furthermore, tiny components from these products can interfere with diagnostics once in the system,
  • In cases of tight budgets, neodymium magnet cost is a challenge,

Maximum magnetic pulling forcewhat contributes to it?

The given pulling force of the magnet represents the maximum force, measured under optimal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, in contrast under shearing force the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.

Precautions

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or in their path when attract. Magnets, depending on their size, can even cut off a finger or there can be a serious pressure or even a fracture.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnetic are highly susceptible to damage, resulting in breaking.

Magnets made of neodymium are fragile as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 It is essential to keep neodymium magnets out of reach from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Pay attention!

In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98