SM 32x300 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130459
GTIN: 5906301813309
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
300 mm
Weight
1660 g
971.70 ZŁ with VAT / pcs + price for transport
790.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us
+48 22 499 98 98
otherwise send us a note through
our online form
the contact page.
Weight along with form of magnetic components can be reviewed using our
modular calculator.
Same-day processing for orders placed before 14:00.
SM 32x300 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their high retention, neodymium magnets are valued for these benefits:
- They do not lose their even during around 10 years – the decrease of strength is only ~1% (theoretically),
- Their ability to resist magnetic interference from external fields is impressive,
- By applying a reflective layer of nickel, the element gains a sleek look,
- The outer field strength of the magnet shows advanced magnetic properties,
- Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- The ability for accurate shaping and adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
- Significant impact in cutting-edge sectors – they find application in hard drives, rotating machines, healthcare devices along with technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them ideal in compact constructions
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also reinforces its overall durability,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
- Potential hazard related to magnet particles may arise, especially if swallowed, which is notable in the context of child safety. Furthermore, miniature parts from these products might interfere with diagnostics after being swallowed,
- In cases of mass production, neodymium magnet cost may be a barrier,
Detachment force of the magnet in optimal conditions – what affects it?
The given pulling force of the magnet represents the maximum force, assessed in the best circumstances, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- under perpendicular detachment force
- under standard ambient temperature
Key elements affecting lifting force
The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of optimal thickness, under perpendicular forces, however under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Moreover, even a slight gap {between} the magnet’s surface and the plate reduces the lifting capacity.
Exercise Caution with Neodymium Magnets
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
It is essential to maintain neodymium magnets away from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Magnets will bounce and clash together within a distance of several to around 10 cm from each other.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are delicate as well as can easily crack and shatter.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Warning!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
