SM 32x300 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130459
GTIN: 5906301813309
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
300 mm
Weight
1660 g
971.70 ZŁ with VAT / pcs + price for transport
790.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure what to buy?
Give us a call
+48 22 499 98 98
alternatively send us a note by means of
form
the contact page.
Strength and structure of magnetic components can be analyzed with our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
SM 32x300 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They have stable power, and over around ten years their performance decreases symbolically – ~1% (in testing),
- They are extremely resistant to demagnetization caused by external magnetic fields,
- In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
- They possess strong magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
- Significant impact in new technology industries – they are utilized in hard drives, electromechanical systems, medical equipment and high-tech tools,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall resistance,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of synthetic coating for outdoor use,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Possible threat from tiny pieces may arise, when consumed by mistake, which is crucial in the family environments. Furthermore, miniature parts from these assemblies can disrupt scanning if inside the body,
- Due to a complex production process, their cost is relatively high,
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given holding capacity of the magnet corresponds to the highest holding force, measured under optimal conditions, namely:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- in a perpendicular direction of force
- under standard ambient temperature
What influences lifting capacity in practice
The lifting capacity of a magnet depends on in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a slight gap {between} the magnet and the plate decreases the lifting capacity.
Be Cautious with Neodymium Magnets
Magnets made of neodymium are incredibly delicate, they easily break and can crumble.
Neodymium magnets are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a severe pressure or a fracture.
Caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
