tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. Practically all "magnets" in our store are available for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to buy very strong magnet? Magnet holders in airtight, solid steel enclosure are excellent for use in variable and difficult weather, including during snow and rain more...

magnets with holders

Magnetic holders can be used to facilitate production, exploring underwater areas, or locating space rocks made of metal check...

Enjoy shipping of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x300 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130459

GTIN: 5906301813309

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

300 mm

Weight

1660 g

971.70 with VAT / pcs + price for transport

790.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
790.00 ZŁ
971.70 ZŁ
price from 5 pcs
750.50 ZŁ
923.12 ZŁ
price from 10 pcs
711.00 ZŁ
874.53 ZŁ

Can't decide what to choose?

Give us a call +48 888 99 98 98 if you prefer send us a note via our online form the contact form page.
Lifting power and structure of a magnet can be analyzed on our magnetic calculator.

Same-day processing for orders placed before 14:00.

SM 32x300 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x300 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130459
GTIN
5906301813309
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
300 mm [±0,1 mm]
Weight
1660 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. As a result, it is possible to precisely segregate ferromagnetic particles from other materials. An important element of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be targeted. The thickness of the magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are used in the food sector to clear metallic contaminants, such as iron fragments or iron dust. Our rollers are built from durable acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, often called cylindrical magnets, are used in food production, metal separation as well as recycling. They help in eliminating iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are built with neodymium magnets placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Usually it is believed that the stronger the magnet, the more efficient it is. But, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines are more compressed. By contrast, when the magnet is thick, the force lines are extended and reach further.
For creating the casings of magnetic separators - rollers, usually stainless steel is employed, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, type AISI 316 steel exhibits the best resistance thanks to its excellent anti-corrosion properties.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. Disadvantages may include the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, you should regularly cleaning them from deposits, avoiding extreme temperatures above 80 degrees, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Testing of the rollers should be carried out every two years. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They retain their attractive force for almost ten years – the drop is just ~1% (according to analyses),
  • They protect against demagnetization induced by external magnetic influence remarkably well,
  • Because of the lustrous layer of nickel, the component looks high-end,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
  • Important function in new technology industries – they serve a purpose in computer drives, electric drives, medical equipment and high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall robustness,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of plastic,
  • Limited ability to create complex details in the magnet – the use of a housing is recommended,
  • Possible threat related to magnet particles may arise, in case of ingestion, which is significant in the health of young users. It should also be noted that tiny components from these assemblies might hinder health screening after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting force for a neodymium magnet – what contributes to it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, assessed in ideal conditions, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

Practical lifting capacity: influencing factors

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate decreases the load capacity.

Caution with Neodymium Magnets

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will crack or alternatively crumble with careless joining to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very strongly.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are delicate as well as can easily crack as well as get damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Warning!

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98