SM 32x300 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130459
GTIN: 5906301813309
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
300 mm
Weight
1660 g
971.70 ZŁ with VAT / pcs + price for transport
790.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Contact us by phone
+48 22 499 98 98
if you prefer send us a note through
form
through our site.
Parameters as well as shape of a neodymium magnet can be tested with our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
SM 32x300 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their strong power, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over nearly ten years their performance decreases symbolically – ~1% (in testing),
- They remain magnetized despite exposure to magnetic noise,
- The use of a mirror-like silver surface provides a eye-catching finish,
- They possess intense magnetic force measurable at the magnet’s surface,
- Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- The ability for precise shaping or adjustment to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
- Key role in new technology industries – they find application in data storage devices, electric drives, medical equipment along with technologically developed systems,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of magnetic elements:
- They can break when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall resistance,
- They lose strength at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we advise waterproof types made of rubber,
- Limited ability to create precision features in the magnet – the use of a housing is recommended,
- Possible threat linked to microscopic shards may arise, in case of ingestion, which is notable in the context of child safety. Furthermore, small elements from these assemblies may interfere with diagnostics when ingested,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Maximum lifting capacity of the magnet – what affects it?
The given strength of the magnet represents the optimal strength, assessed in ideal conditions, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.
Be Cautious with Neodymium Magnets
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Do not give neodymium magnets to children.
Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
Neodymium magnets can become demagnetized at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnetic are fragile and can easily break as well as get damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Caution!
To illustrate why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.
