tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our offer. Practically all magnesy in our store are in stock for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnet for fishing F400 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid enclosure are excellent for use in challenging climate conditions, including snow and rain see...

magnets with holders

Magnetic holders can be used to facilitate production processes, underwater discoveries, or finding meteors from gold more information...

Order always shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x300 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130459

GTIN: 5906301813309

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

300 mm

Weight

1660 g

971.70 with VAT / pcs + price for transport

790.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
790.00 ZŁ
971.70 ZŁ
price from 5 pcs
750.50 ZŁ
923.12 ZŁ
price from 10 pcs
711.00 ZŁ
874.53 ZŁ

Do you have trouble choosing?

Contact us by phone +48 22 499 98 98 if you prefer let us know through form the contact page.
Parameters and appearance of magnetic components can be analyzed on our force calculator.

Orders submitted before 14:00 will be dispatched today!

SM 32x300 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x300 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130459
GTIN
5906301813309
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
300 mm [±0,1 mm]
Weight
1660 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. Due to this, it is possible to precisely remove ferromagnetic particles from other materials. An important element of its operation is the repulsion of magnetic poles N and S, which enables magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in the food sector to clear metallic contaminants, including iron fragments or iron dust. Our rollers are constructed from durable acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, otherwise magnetic separators, are used in food production, metal separation as well as waste processing. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets anchored in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Often it is believed that the greater the magnet's power, the more effective. However, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be short. By contrast, in the case of a thicker magnet, the force lines are extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, usually stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, type AISI 316 steel is recommended thanks to its excellent anti-corrosion properties.
Magnetic rollers stand out for their specific arrangement of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from contaminants, avoiding extreme temperatures up to 80°C, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out every two years. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable power, neodymium magnets have these key benefits:

  • They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
  • Their ability to resist magnetic interference from external fields is notable,
  • By applying a shiny layer of silver, the element gains a clean look,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for custom shaping and adjustment to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Important function in new technology industries – they are utilized in data storage devices, electromechanical systems, healthcare devices or even sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture while also enhances its overall strength,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment. If exposed to rain, we recommend using waterproof magnets, such as those made of plastic,
  • Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is important in the context of child safety. Furthermore, small elements from these assemblies have the potential to complicate medical imaging when ingested,
  • Due to a complex production process, their cost is relatively high,

Highest magnetic holding forcewhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, calculated in ideal conditions, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, however under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate decreases the lifting capacity.

Handle Neodymium Magnets Carefully

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

 Maintain neodymium magnets away from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are known for their fragility, which can cause them to shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If you have a finger between or alternatively on the path of attracting magnets, there may be a serious cut or even a fracture.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Pay attention!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98