SM 32x300 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130459
GTIN: 5906301813309
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
300 mm
Weight
1660 g
971.70 ZŁ with VAT / pcs + price for transport
790.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Contact us by phone
+48 888 99 98 98
if you prefer drop us a message using
form
our website.
Lifting power along with shape of neodymium magnets can be estimated with our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 32x300 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their tremendous strength, neodymium magnets offer the following advantages:
- They do not lose their power around 10 years – the loss of power is only ~1% (according to tests),
- They show superior resistance to demagnetization from outside magnetic sources,
- In other words, due to the glossy nickel coating, the magnet obtains an professional appearance,
- Magnetic induction on the surface of these magnets is notably high,
- Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
- Important function in advanced technical fields – they are used in HDDs, rotating machines, clinical machines or even other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in compact constructions
Disadvantages of NdFeB magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and strengthens its overall resistance,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
- Potential hazard linked to microscopic shards may arise, especially if swallowed, which is significant in the health of young users. It should also be noted that miniature parts from these products may complicate medical imaging if inside the body,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Magnetic strength at its maximum – what it depends on?
The given strength of the magnet means the optimal strength, determined under optimal conditions, namely:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
Practical aspects of lifting capacity – factors
Practical lifting force is dependent on elements, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, however under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate decreases the lifting capacity.
Be Cautious with Neodymium Magnets
Neodymium magnets are especially delicate, resulting in shattering.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Magnets are not toys, youngest should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
If have a finger between or alternatively on the path of attracting magnets, there may be a serious cut or even a fracture.
Caution!
In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.
