tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are available for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for searching F300 GOLD

Where to purchase very strong magnet? Holders with magnets in airtight and durable steel casing are perfect for use in variable and difficult weather, including during rain and snow more...

magnetic holders

Holders with magnets can be applied to improve production, underwater exploration, or locating meteorites made of ore see...

Shipping always shipped on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships in 3 days

UMH 20x7x35 [M4] / N38 - magnetic holder with hook

magnetic holder with hook

Catalog no 310425

GTIN: 5906301814542

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

35 mm

Height [±0,1 mm]

7 mm

Weight

21 g

Magnetization Direction

↑ axial

Load capacity

14.5 kg / 142.2 N

Coating

[NiCuNi] nickel

8.59 with VAT / pcs + price for transport

6.98 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6.98 ZŁ
8.59 ZŁ
price from 100 pcs
6.56 ZŁ
8.07 ZŁ
price from 150 pcs
6.14 ZŁ
7.56 ZŁ

Need advice?

Call us now +48 888 99 98 98 otherwise contact us via contact form through our site.
Force and shape of magnets can be estimated on our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

UMH 20x7x35 [M4] / N38 - magnetic holder with hook

Specification/characteristics UMH 20x7x35 [M4] / N38 - magnetic holder with hook
properties
values
Cat. no.
310425
GTIN
5906301814542
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
35 mm [±0,1 mm]
Height
7 mm [±0,1 mm]
Weight
21 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
14.5 kg / 142.2 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Holders with hooks are indispensable in large stores and warehouses for hanging advertisements (POS systems). You can use them to organize wires or hang tools on metal shelves.
The tip is demountable - you can unscrew the hook and screw in a bolt, eyelet, or other element. This gives huge flexibility of applications.
Nominal lifting capacity (e.g. 14.5 kg) applies to perpendicular (vertical) force when mounted on a ceiling. For heavy ceiling advertisements, we recommend choosing a magnet with a large power reserve.
The cup acts as a magnetic yoke, boosting the neodymium's action. The housing ensures mechanical durability, which is important in industrial conditions.
Standard holders are coated with nickel or zinc, which protects them from corrosion indoors. If you plan outdoor installation, protect the holder with additional paint or grease
On pipes or rounded surfaces, the holding force is much smaller because the magnet only touches linearly. To improve adhesion, clean the mounting area of dirt and loose rust

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They have stable power, and over nearly ten years their attraction force decreases symbolically – ~1% (according to theory),
  • They remain magnetized despite exposure to magnetic surroundings,
  • The use of a decorative gold surface provides a eye-catching finish,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for precise shaping as well as adjustment to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
  • Important function in advanced technical fields – they find application in HDDs, electric motors, medical equipment as well as technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall robustness,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can rust. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is important in the protection of children. Additionally, miniature parts from these products can interfere with diagnostics if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Highest magnetic holding forcewhat affects it?

The given pulling force of the magnet means the maximum force, calculated in ideal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance {between} the magnet and the plate reduces the load capacity.

Notes with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnetic are characterized by their fragility, which can cause them to shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

 Keep neodymium magnets far from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Warning!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98