tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnets for searching F400 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight and durable steel casing are ideally suited for use in variable and difficult weather conditions, including snow and rain check...

magnets with holders

Holders with magnets can be used to enhance production, underwater discoveries, or locating meteors from gold see...

We promise to ship ordered magnets on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMH 20x7x35 [M4] / N38 - magnetic holder with hook

magnetic holder with hook

Catalog no 310425

GTIN: 5906301814542

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

35 mm

Height [±0,1 mm]

7 mm

Weight

21 g

Magnetization Direction

↑ axial

Load capacity

14.5 kg / 142.2 N

Coating

[NiCuNi] nickel

8.59 with VAT / pcs + price for transport

6.98 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6.98 ZŁ
8.59 ZŁ
price from 100 pcs
6.56 ZŁ
8.07 ZŁ
price from 150 pcs
6.14 ZŁ
7.55 ZŁ

Can't decide what to choose?

Give us a call +48 888 99 98 98 if you prefer drop us a message through inquiry form our website.
Parameters as well as form of a magnet can be reviewed using our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

UMH 20x7x35 [M4] / N38 - magnetic holder with hook

Specification/characteristics UMH 20x7x35 [M4] / N38 - magnetic holder with hook
properties
values
Cat. no.
310425
GTIN
5906301814542
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
35 mm [±0,1 mm]
Height
7 mm [±0,1 mm]
Weight
21 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
14.5 kg / 142.2 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They have constant strength, and over around 10 years their attraction force decreases symbolically – ~1% (in testing),
  • They remain magnetized despite exposure to magnetic noise,
  • The use of a decorative silver surface provides a eye-catching finish,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Important function in modern technologies – they find application in hard drives, electromechanical systems, healthcare devices or even sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them useful in small systems

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to mechanical hits, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall durability,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to moisture can corrode. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Health risk related to magnet particles may arise, when consumed by mistake, which is important in the context of child safety. Furthermore, miniature parts from these assemblies have the potential to disrupt scanning if inside the body,
  • Due to the price of neodymium, their cost is above average,

Highest magnetic holding forcewhat affects it?

The given holding capacity of the magnet corresponds to the highest holding force, measured in ideal conditions, that is:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Key elements affecting lifting force

The lifting capacity of a magnet is determined by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under shearing force the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.

Handle Neodymium Magnets with Caution

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Magnets made of neodymium are highly susceptible to damage, leading to breaking.

Magnets made of neodymium are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

If have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Pay attention!

In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98