UMH 20x7x35 [M4] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310425
GTIN: 5906301814542
Diameter Ø [±0,1 mm]
20 mm
Height [±0,1 mm]
35 mm
Height [±0,1 mm]
7 mm
Weight
21 g
Magnetization Direction
↑ axial
Load capacity
14.5 kg / 142.2 N
Coating
[NiCuNi] nickel
8.59 ZŁ with VAT / pcs + price for transport
6.98 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Pick up the phone and ask
+48 22 499 98 98
if you prefer send us a note by means of
contact form
our website.
Force along with structure of a neodymium magnet can be calculated on our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
UMH 20x7x35 [M4] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their high retention, neodymium magnets are valued for these benefits:
- They do not lose their power nearly 10 years – the reduction of power is only ~1% (based on measurements),
- Their ability to resist magnetic interference from external fields is among the best,
- The use of a decorative silver surface provides a smooth finish,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- The ability for precise shaping and customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
- Important function in cutting-edge sectors – they find application in HDDs, electromechanical systems, diagnostic apparatus along with sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in compact constructions
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall robustness,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a humid environment, especially when used outside, we recommend using encapsulated magnets, such as those made of non-metallic materials,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
- Possible threat related to magnet particles may arise, when consumed by mistake, which is crucial in the context of child safety. Moreover, minuscule fragments from these assemblies might interfere with diagnostics after being swallowed,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Magnetic strength at its maximum – what it depends on?
The given pulling force of the magnet represents the maximum force, measured under optimal conditions, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
Practical aspects of lifting capacity – factors
Practical lifting force is dependent on elements, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined using a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance {between} the magnet and the plate lowers the lifting capacity.
We Recommend Caution with Neodymium Magnets
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets should not be in the vicinity children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can become demagnetized at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets will jump and touch together within a distance of several to almost 10 cm from each other.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Magnets made of neodymium are known for their fragility, which can cause them to crumble.
Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Warning!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.
