XT-5 magnetyzery do silników - DIESEL + olej - XT-5 magnetizer
XT-5 magnetizer
Catalog no 060247
GTIN: 5906301812418
Weight
217 g
98.99 ZŁ with VAT / pcs + price for transport
80.48 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us
+48 888 99 98 98
if you prefer get in touch using
request form
the contact form page.
Weight and shape of magnets can be reviewed using our
magnetic calculator.
Same-day processing for orders placed before 14:00.
XT-5 magnetyzery do silników - DIESEL + olej - XT-5 magnetizer
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They retain their magnetic properties for almost ten years – the loss is just ~1% (according to analyses),
- They remain magnetized despite exposure to magnetic surroundings,
- Thanks to the polished finish and nickel coating, they have an visually attractive appearance,
- The outer field strength of the magnet shows advanced magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for precise shaping and customization to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
- Key role in new technology industries – they are used in data storage devices, rotating machines, medical equipment or even high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which allows for use in miniature devices
Disadvantages of magnetic elements:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall robustness,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of plastic for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
- Safety concern due to small fragments may arise, especially if swallowed, which is significant in the family environments. It should also be noted that small elements from these products have the potential to disrupt scanning once in the system,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Maximum holding power of the magnet – what affects it?
The given strength of the magnet represents the optimal strength, calculated in the best circumstances, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- with vertical force applied
- at room temperature
Determinants of practical lifting force of a magnet
In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet and the plate reduces the holding force.
Safety Precautions
Neodymium magnets can become demagnetized at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnets are delicate and can easily break as well as get damaged.
Magnets made of neodymium are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Safety precautions!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
