UMGGW 66x8.5 [M8] GW / N38 - magnetic holder rubber internal thread
magnetic holder rubber internal thread
Catalog no 160308
GTIN: 5906301813668
Diameter Ø [±0,1 mm]
66 mm
Height [±0,1 mm]
8.5 mm
Weight
100 g
Load capacity
18.4 kg / 180.44 N
23.37 ZŁ with VAT / pcs + price for transport
19.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Call us
+48 888 99 98 98
if you prefer drop us a message via
request form
the contact section.
Weight along with structure of neodymium magnets can be tested with our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
UMGGW 66x8.5 [M8] GW / N38 - magnetic holder rubber internal thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent power, neodymium magnets have these key benefits:
- Their power remains stable, and after around 10 years, it drops only by ~1% (according to research),
- They are highly resistant to demagnetization caused by external magnetic fields,
- Thanks to the polished finish and nickel coating, they have an aesthetic appearance,
- They possess significant magnetic force measurable at the magnet’s surface,
- These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to form),
- With the option for fine forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
- Important function in cutting-edge sectors – they are utilized in hard drives, electric drives, healthcare devices along with other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them useful in compact constructions
Disadvantages of magnetic elements:
- They are fragile when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall durability,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is not feasible,
- Safety concern due to small fragments may arise, especially if swallowed, which is significant in the health of young users. Additionally, minuscule fragments from these devices might interfere with diagnostics after being swallowed,
- Due to expensive raw materials, their cost is relatively high,
Best holding force of the magnet in ideal parameters – what it depends on?
The given lifting capacity of the magnet represents the maximum lifting force, measured in the best circumstances, that is:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- in a perpendicular direction of force
- under standard ambient temperature
Impact of factors on magnetic holding capacity in practice
In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate reduces the load capacity.
Be Cautious with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Magnets are not toys, youngest should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are fragile and can easily break and shatter.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will bounce and contact together within a distance of several to almost 10 cm from each other.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Warning!
So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are powerful neodymium magnets?.
