UMGGW 66x8.5 [M8] GW / N38 - magnetic holder rubber internal thread
magnetic holder rubber internal thread
Catalog no 160308
GTIN: 5906301813668
Diameter Ø [±0,1 mm]
66 mm
Height [±0,1 mm]
8.5 mm
Weight
100 g
Load capacity
18.4 kg / 180.44 N
23.37 ZŁ with VAT / pcs + price for transport
19.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Call us now
+48 888 99 98 98
if you prefer send us a note via
our online form
the contact section.
Strength as well as structure of a magnet can be checked with our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
UMGGW 66x8.5 [M8] GW / N38 - magnetic holder rubber internal thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional field intensity, neodymium magnets offer the following advantages:
- They do not lose their magnetism, even after approximately ten years – the loss of power is only ~1% (according to tests),
- They remain magnetized despite exposure to magnetic noise,
- Because of the brilliant layer of nickel, the component looks high-end,
- They have extremely strong magnetic induction on the surface of the magnet,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which broadens their functional possibilities,
- Significant impact in modern technologies – they are used in computer drives, electric motors, diagnostic apparatus along with sophisticated instruments,
- Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of neodymium magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time reinforces its overall strength,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to damp air can degrade. Therefore, for outdoor applications, we recommend waterproof types made of non-metallic composites,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
- Health risk linked to microscopic shards may arise, when consumed by mistake, which is crucial in the health of young users. Additionally, miniature parts from these assemblies may hinder health screening once in the system,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Highest magnetic holding force – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, calculated in the best circumstances, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
Determinants of practical lifting force of a magnet
In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of suitable thickness, under perpendicular forces, whereas under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a small distance {between} the magnet and the plate reduces the load capacity.
Handle Neodymium Magnets Carefully
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.
Neodymium magnetic are incredibly fragile, they easily fall apart as well as can become damaged.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Be careful!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.