tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are available for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in solid and airtight steel casing are ideally suited for use in challenging weather conditions, including during snow and rain see more...

magnets with holders

Holders with magnets can be applied to improve production, underwater exploration, or locating space rocks from gold more information...

Shipping is shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships tomorrow

MW 20x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010041

GTIN: 5906301810407

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

2 mm

Weight

4.71 g

Magnetization Direction

↑ axial

Load capacity

2.21 kg / 21.67 N

Magnetic Induction

121.57 mT

Coating

[NiCuNi] nickel

2.08 with VAT / pcs + price for transport

1.690 ZŁ net + 23% VAT / pcs

1.650 ZŁ net was the lowest price in the last 30 days

bulk discounts:

Need more?

price from 1 pcs
1.690 ZŁ
2.08 ZŁ
price from 400 pcs
1.589 ZŁ
1.954 ZŁ
price from 1500 pcs
1.487 ZŁ
1.829 ZŁ

Want to talk magnets?

Call us +48 888 99 98 98 or drop us a message via request form through our site.
Force along with appearance of a neodymium magnet can be verified with our power calculator.

Same-day processing for orders placed before 14:00.

MW 20x2 / N38 - cylindrical magnet

Specification/characteristics MW 20x2 / N38 - cylindrical magnet
properties
values
Cat. no.
010041
GTIN
5906301810407
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
4.71 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.21 kg / 21.67 N
Magnetic Induction ~ ?
121.57 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

These rod-shaped products are made of the strongest magnetic material in the world. As a result, they offer powerful holding force while maintaining a small size. Model MW 20x2 / N38 has a pull force of approx. 2.21 kg. Their symmetrical shape makes them excellent for installing in sockets, electric motors and filters. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
We recommend installation by gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Use strong epoxy resins, which do not react with the nickel coating. Never hammer the magnets, as neodymium is a brittle material and is prone to chipping upon impact.
The 'N' number indicates the maximum strength of the material. A higher value means more power for the same size. The market standard is N38, which provides an optimal price-to-power ratio. For demanding applications, we recommend grade N52, which is the strongest commercially available sinter.
Neodymium magnets are coated with a protective layer of Ni-Cu-Ni (Nickel-Copper-Nickel), which provides basic protection. However, they are not fully waterproof. With constant contact with water or rain, the coating may be damaged, leading to corrosion and loss of power. For such tasks, we recommend hermetic sealing or ordering a special version.
Their wide application covers advanced technologies. They are used in generators and wind turbines and in magnetic separators for cleaning bulk products. Additionally, due to their precise dimensions, they are indispensable in Hall effect sensors.
The maximum operating temperature for the standard version is 80°C (176°F). Above this value, the magnet loses its strength. For more demanding conditions (e.g. 120°C, 150°C, 200°C), we offer H, SH, or UH series on request. Please note that magnets are sensitive to rapid temperature changes.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They do not lose their power approximately ten years – the loss of strength is only ~1% (theoretically),
  • They protect against demagnetization induced by ambient magnetic fields very well,
  • By applying a reflective layer of nickel, the element gains a modern look,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • With the option for customized forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Important function in modern technologies – they find application in hard drives, electric motors, healthcare devices or even sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall resistance,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
  • Safety concern linked to microscopic shards may arise, especially if swallowed, which is important in the protection of children. It should also be noted that minuscule fragments from these devices may interfere with diagnostics when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given strength of the magnet corresponds to the optimal strength, assessed under optimal conditions, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Magnet lifting force in use – key factors

The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate reduces the lifting capacity.

Safety Precautions

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

  Do not give neodymium magnets to children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are extremely delicate, they easily break and can crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Be careful!

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98