MW 20x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010041
GTIN: 5906301810407
Diameter Ø [±0,1 mm]
20 mm
Height [±0,1 mm]
2 mm
Weight
4.71 g
Magnetization Direction
↑ axial
Load capacity
2.21 kg / 21.67 N
Magnetic Induction
121.57 mT
Coating
[NiCuNi] nickel
2.03 ZŁ with VAT / pcs + price for transport
1.650 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure where to buy?
Give us a call
+48 22 499 98 98
if you prefer send us a note using
inquiry form
the contact form page.
Strength and shape of a magnet can be calculated using our
force calculator.
Order by 14:00 and we’ll ship today!
MW 20x2 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold-nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as nickel, to preserve them from environmental factors and prolong their durability. Temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their high retention, neodymium magnets are valued for these benefits:
- They retain their magnetic properties for around ten years – the drop is just ~1% (according to analyses),
- They show strong resistance to demagnetization from external field exposure,
- Because of the lustrous layer of silver, the component looks visually appealing,
- Magnetic induction on the surface of these magnets is very strong,
- With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- The ability for precise shaping or adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Significant impact in modern technologies – they are utilized in computer drives, electromechanical systems, clinical machines as well as technologically developed systems,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are fragile when subjected to a strong impact. If the magnets are exposed to external force, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage while also reinforces its overall resistance,
- They lose power at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
- Safety concern due to small fragments may arise, when consumed by mistake, which is significant in the protection of children. Moreover, miniature parts from these magnets may hinder health screening when ingested,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Maximum lifting capacity of the magnet – what it depends on?
The given holding capacity of the magnet represents the highest holding force, assessed in the best circumstances, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Practical aspects of lifting capacity – factors
Practical lifting force is determined by elements, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.
Be Cautious with Neodymium Magnets
Neodymium magnets are highly fragile, they easily fall apart and can crumble.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will crack or alternatively crumble with careless connecting to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.
Neodymium magnets are the strongest magnets ever invented. Their power can shock you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets should not be in the vicinity youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Pay attention!
So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.