tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are available for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for water searching F400 GOLD

Where to buy strong magnet? Magnet holders in solid and airtight steel enclosure are ideally suited for use in challenging climate conditions, including in the rain and snow check...

magnets with holders

Holders with magnets can be applied to facilitate production processes, exploring underwater areas, or searching for meteorites made of metal more information...

Enjoy shipping of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010041

GTIN: 5906301810407

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

2 mm

Weight

4.71 g

Magnetization Direction

↑ axial

Load capacity

2.21 kg / 21.67 N

Magnetic Induction

121.57 mT

Coating

[NiCuNi] nickel

1.40 with VAT / pcs + price for transport

1.14 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.14 ZŁ
1.40 ZŁ
price from 527 pcs
1.07 ZŁ
1.32 ZŁ
price from 1930 pcs
1.00 ZŁ
1.23 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 20x2 / N38 - cylindrical magnet

Specification/characteristics MW 20x2 / N38 - cylindrical magnet
properties
values
Cat. no.
010041
GTIN
5906301810407
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
4.71 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.21 kg / 21.67 N
Magnetic Induction ~ ?
121.57 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 20x2 / N38 are magnets created of neodymium in a cylinder form. They are known for their very strong magnetic properties, which outperform traditional ferrite magnets. Because of their strength, they are often used in devices that require strong adhesion. The standard temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet designated MW 20x2 / N38 with a magnetic force 2.21 kg has a weight of only 4.71 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the website for the current information and promotions, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are useful in many applications, they can also pose certain risk. Because of their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin or other materials, especially be careful with fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with other metals and then shaping and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as gold, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time - after 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in many variants of shapes and sizes, which expands the range of their possible uses.
  • Wide application in the industry of new technologies – find application in hard drives, electric drive mechanisms, medical equipment and very modern machines.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard to health from tiny fragments of magnets are risky, in case of ingestion, which becomes significant in the context of child safety. It's also worth noting that miniscule components of these magnets are able to be problematic in medical diagnosis in case of swallowing.

Safety Precautions

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets jump and also touch each other mutually within a radius of several to almost 10 cm from each other.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are especially fragile, resulting in damage.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

  Magnets are not toys, children should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Exercise caution!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98