tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are available for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to buy strong neodymium magnet? Holders with magnets in solid and airtight enclosure are excellent for use in difficult, demanding climate conditions, including in the rain and snow read...

magnets with holders

Holders with magnets can be applied to enhance manufacturing, underwater discoveries, or locating meteors made of metal see...

Order always shipped on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010041

GTIN: 5906301810407

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

2 mm

Weight

4.71 g

Magnetization Direction

↑ axial

Load capacity

2.21 kg / 21.67 N

Magnetic Induction

121.57 mT

Coating

[NiCuNi] nickel

2.03 with VAT / pcs + price for transport

1.65 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.65 ZŁ
2.03 ZŁ
price from 400 pcs
1.55 ZŁ
1.91 ZŁ
price from 1550 pcs
1.44 ZŁ
1.77 ZŁ

Need advice?

Give us a call +48 888 99 98 98 or get in touch using inquiry form the contact form page.
Strength and appearance of neodymium magnets can be calculated with our power calculator.

Order by 14:00 and we’ll ship today!

MW 20x2 / N38 - cylindrical magnet

Specification/characteristics MW 20x2 / N38 - cylindrical magnet
properties
values
Cat. no.
010041
GTIN
5906301810407
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
4.71 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.21 kg / 21.67 N
Magnetic Induction ~ ?
121.57 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 20x2 / N38 are magnets made of neodymium in a cylinder form. They are known for their very strong magnetic properties, which exceed ordinary ferrite magnets. Because of their power, they are often used in products that require powerful holding. The typical temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet named MW 20x2 / N38 and a magnetic strength 2.21 kg weighs only 4.71 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the current information and promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in various applications, they can also pose certain risk. Due to their strong magnetic power, they can attract metallic objects with uncontrolled force, which can lead to crushing skin as well as other materials, especially be careful with fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with additional metals and then forming and thermal processing. Their unmatched magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as epoxy, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
A cylindrical neodymium magnet N50 and N52 is a strong and powerful magnetic piece in the form of a cylinder, that provides high force and universal application. Very good price, 24h delivery, resistance and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They do not lose their strength nearly 10 years – the reduction of strength is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is impressive,
  • In other words, due to the shiny gold coating, the magnet obtains an professional appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which increases their application range,
  • Wide application in cutting-edge sectors – they are utilized in data storage devices, rotating machines, diagnostic apparatus or even high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and additionally increases its overall resistance,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is significant in the protection of children. Furthermore, minuscule fragments from these assemblies might hinder health screening once in the system,
  • Due to the price of neodymium, their cost is relatively high,

Optimal lifting capacity of a neodymium magnetwhat contributes to it?

The given lifting capacity of the magnet means the maximum lifting force, determined in the best circumstances, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the holding force.

Be Cautious with Neodymium Magnets

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Magnets made of neodymium are incredibly delicate, they easily break and can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Neodymium magnets should not be around youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Neodymium magnets jump and also touch each other mutually within a distance of several to around 10 cm from each other.

Caution!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98