UMH 16x5x32 [M4] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310424
GTIN: 5906301814535
Diameter Ø [±0,1 mm]
16 mm
Height [±0,1 mm]
32 mm
Height [±0,1 mm]
5 mm
Weight
12 g
Magnetization Direction
↑ axial
Load capacity
7.5 kg / 73.55 N
Coating
[NiCuNi] nickel
4.88 ZŁ with VAT / pcs + price for transport
3.97 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Give us a call
+48 22 499 98 98
or send us a note using
form
the contact section.
Specifications and form of magnets can be checked with our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
UMH 16x5x32 [M4] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their high retention, neodymium magnets are valued for these benefits:
- They have constant strength, and over nearly ten years their performance decreases symbolically – ~1% (according to theory),
- They remain magnetized despite exposure to strong external fields,
- Because of the reflective layer of gold, the component looks high-end,
- They have very high magnetic induction on the surface of the magnet,
- With the right combination of materials, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
- The ability for custom shaping as well as adaptation to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
- Wide application in advanced technical fields – they are utilized in computer drives, electric motors, medical equipment and sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them useful in compact constructions
Disadvantages of neodymium magnets:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to physical collisions, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall durability,
- They lose magnetic force at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a wet environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
- Possible threat related to magnet particles may arise, when consumed by mistake, which is important in the protection of children. It should also be noted that tiny components from these devices can hinder health screening once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, calculated in ideal conditions, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Lifting capacity in practice – influencing factors
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet and the plate decreases the load capacity.
Handle Neodymium Magnets Carefully
Keep neodymium magnets as far away as possible from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when attract. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.
Neodymium magnets should not be in the vicinity children.
Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Magnets made of neodymium are extremely fragile, leading to breaking.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Safety precautions!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
