UMH 16x5x32 [M4] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310424
GTIN: 5906301814535
Diameter Ø [±0,1 mm]
16 mm
Height [±0,1 mm]
32 mm
Height [±0,1 mm]
5 mm
Weight
12 g
Magnetization Direction
↑ axial
Load capacity
7.5 kg / 73.55 N
Coating
[NiCuNi] nickel
4.88 ZŁ with VAT / pcs + price for transport
3.97 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have purchase concerns?
Call us now
+48 22 499 98 98
alternatively send us a note through
inquiry form
the contact form page.
Parameters as well as appearance of magnets can be analyzed on our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
UMH 16x5x32 [M4] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (according to literature),
- They show superior resistance to demagnetization from external field exposure,
- The use of a decorative gold surface provides a refined finish,
- They possess intense magnetic force measurable at the magnet’s surface,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
- With the option for customized forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
- Important function in modern technologies – they are utilized in hard drives, electric drives, medical equipment and other advanced devices,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of magnetic elements:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall robustness,
- They lose power at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to damp air can rust. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
- Health risk due to small fragments may arise, if ingested accidentally, which is important in the health of young users. Additionally, tiny components from these assemblies can disrupt scanning when ingested,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, calculated under optimal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- under standard ambient temperature
Magnet lifting force in use – key factors
Practical lifting force is dependent on elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under perpendicular forces, in contrast under shearing force the lifting capacity is smaller. Additionally, even a small distance {between} the magnet’s surface and the plate lowers the load capacity.
Caution with Neodymium Magnets
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
It is essential to keep neodymium magnets out of reach from youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Neodymium magnetic are fragile as well as can easily break and shatter.
Neodymium magnetic are delicate and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Safety rules!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.
