UMH 16x5x32 [M4] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310424
GTIN: 5906301814535
Diameter Ø [±0,1 mm]
16 mm
Height [±0,1 mm]
32 mm
Height [±0,1 mm]
5 mm
Weight
12 g
Magnetization Direction
↑ axial
Load capacity
7.5 kg / 73.55 N
Coating
[NiCuNi] nickel
4.88 ZŁ with VAT / pcs + price for transport
3.97 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Contact us by phone
+48 22 499 98 98
if you prefer let us know through
contact form
the contact form page.
Strength along with structure of neodymium magnets can be reviewed with our
magnetic mass calculator.
Same-day shipping for orders placed before 14:00.
UMH 16x5x32 [M4] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetism, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (according to literature),
- They remain magnetized despite exposure to magnetic noise,
- In other words, due to the metallic silver coating, the magnet obtains an aesthetic appearance,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- The ability for custom shaping as well as customization to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Wide application in modern technologies – they serve a purpose in computer drives, electric motors, medical equipment along with other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which allows for use in miniature devices
Disadvantages of magnetic elements:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and additionally enhances its overall durability,
- They lose strength at extreme temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
- Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
- Safety concern due to small fragments may arise, especially if swallowed, which is notable in the health of young users. Moreover, small elements from these devices have the potential to complicate medical imaging once in the system,
- In cases of mass production, neodymium magnet cost may be a barrier,
Maximum lifting force for a neodymium magnet – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, assessed under optimal conditions, namely:
- with mild steel, used as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- with no separation
- with vertical force applied
- under standard ambient temperature
What influences lifting capacity in practice
The lifting capacity of a magnet depends on in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a small distance {between} the magnet and the plate reduces the load capacity.
Handle Neodymium Magnets with Caution
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets may crack or alternatively crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely firmly.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are extremely delicate, they easily crack as well as can crumble.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Exercise caution!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.
