tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. Practically all magnesy on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnet for searching F400 GOLD

Where to purchase powerful magnet? Magnetic holders in solid and airtight enclosure are excellent for use in difficult, demanding weather conditions, including during rain and snow more...

magnets with holders

Holders with magnets can be applied to improve production processes, underwater exploration, or searching for space rocks made of ore check...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

UMH 16x5x32 [M4] / N38 - magnetic holder with hook

magnetic holder with hook

Catalog no 310424

GTIN: 5906301814535

5

Diameter Ø [±0,1 mm]

16 mm

Height [±0,1 mm]

32 mm

Height [±0,1 mm]

5 mm

Weight

12 g

Magnetization Direction

↑ axial

Load capacity

7.5 kg / 73.55 N

Coating

[NiCuNi] nickel

4.88 with VAT / pcs + price for transport

3.97 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.97 ZŁ
4.88 ZŁ
price from 100 pcs
3.73 ZŁ
4.59 ZŁ
price from 250 pcs
3.49 ZŁ
4.30 ZŁ

Want to negotiate?

Contact us by phone +48 22 499 98 98 if you prefer send us a note via request form the contact form page.
Strength and structure of magnets can be analyzed with our magnetic mass calculator.

Same-day shipping for orders placed before 14:00.

UMH 16x5x32 [M4] / N38 - magnetic holder with hook

Specification/characteristics UMH 16x5x32 [M4] / N38 - magnetic holder with hook
properties
values
Cat. no.
310424
GTIN
5906301814535
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
16 mm [±0,1 mm]
Height
32 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
12 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
7.5 kg / 73.55 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Holders with hooks are indispensable in large stores and warehouses for hanging advertisements (POS systems). You can use them to organize wires or hang tools on metal shelves.
The tip is demountable - you can unscrew the hook and screw in a bolt, eyelet, or other element. Thanks to this, one magnet can perform many functions.
You get the greatest force by mounting the magnet on a thick, horizontal steel surface. When mounting on a wall (vertically), the holding force is much lower due to shear force (the magnet may slide).
The cup acts as a magnetic yoke, boosting the neodymium's action. A bare magnet could crack upon sudden contact with metal.
The anti-corrosion coating is sufficient for applications in shops, offices, and dry warehouses. With prolonged contact with moisture outdoors, rust may appear on the housing or hook
Unevenness, rust, or paint create an air gap that drastically weakens the grip. In the case of mounting on a mesh, it is necessary to use two magnets (one in front, one behind) clamping the wire

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous pulling force, neodymium magnets offer the following advantages:

  • They do not lose their even over around 10 years – the decrease of strength is only ~1% (according to tests),
  • They are very resistant to demagnetization caused by external magnetic fields,
  • Because of the reflective layer of gold, the component looks visually appealing,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their usage potential,
  • Wide application in modern technologies – they find application in data storage devices, electric drives, diagnostic apparatus along with other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of NdFeB magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall strength,
  • They lose field intensity at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing complex structures directly in the magnet,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is crucial in the context of child safety. Moreover, tiny components from these assemblies have the potential to hinder health screening after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting capacity of the magnetwhat affects it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in a perfect environment, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Magnets are not toys, youngest should not play with them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Magnets made of neodymium are highly delicate, they easily break and can crumble.

Neodymium magnetic are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a serious pressure or even a fracture.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Caution!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98