e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe in our store are available for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy very strong magnet? Magnet holders in solid and airtight steel casing are ideally suited for use in difficult, demanding weather, including snow and rain read...

magnetic holders

Holders with magnets can be used to facilitate production, underwater exploration, or locating meteors from gold check...

We promise to ship your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

UMGGW 88x8.5 [M6] GW / N38 - magnetic holder rubber internal thread

magnetic holder rubber internal thread

Catalog no 160309

GTIN: 5906301813675

5

Diameter Ø [±0,1 mm]

88 mm

Height [±0,1 mm]

8.5 mm

Weight

186 g

Load capacity

42.9 kg / 420.71 N

40.59 with VAT / pcs + price for transport

33.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
33.00 ZŁ
40.59 ZŁ
price from 10 pcs
31.02 ZŁ
38.15 ZŁ
price from 30 pcs
29.04 ZŁ
35.72 ZŁ

Want to negotiate?

Call us +48 22 499 98 98 if you prefer let us know through inquiry form the contact page.
Weight as well as appearance of magnets can be estimated on our power calculator.

Orders submitted before 14:00 will be dispatched today!

UMGGW 88x8.5 [M6] GW / N38 - magnetic holder rubber internal thread

Specification/characteristics UMGGW 88x8.5 [M6] GW / N38 - magnetic holder rubber internal thread
properties
values
Cat. no.
160309
GTIN
5906301813675
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
88 mm [±0,1 mm]
Height
8.5 mm [±0,1 mm]
Weight
186 g [±0,1 mm]
Load capacity ~ ?
42.9 kg / 420.71 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Thanks to the rubber coating, these magnets do not scratch paint and do not slip. They are commonly used in the advertising industry (car wrapping), lighting (work lamps), and monitoring.
They are completely resistant to rain, snow, and harsh road conditions. Ideal for outdoor applications. Guarantees no rust stains on the paint.
Rubber has a high coefficient of friction, making the holder very hard to slide sideways (shear force). They ensure mounting stability under vibrations and wind.
You can screw any bolt, hook, handle, or cable holder with the appropriate thread into the magnet. It is a base to which you can screw a work lamp or phone holder.
Inside there are several magnets arranged with alternating poles, closing the magnetic field close to the surface. It is safer for electronics inside the vehicle.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional pulling force, neodymium magnets offer the following advantages:

  • They have unchanged lifting capacity, and over around 10 years their attraction force decreases symbolically – ~1% (according to theory),
  • They are highly resistant to demagnetization caused by external magnetic fields,
  • By applying a shiny layer of silver, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is very strong,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for custom shaping or adaptation to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Key role in modern technologies – they are utilized in data storage devices, rotating machines, medical equipment as well as other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them useful in compact constructions

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall strength,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of plastic,
  • Limited ability to create precision features in the magnet – the use of a housing is recommended,
  • Safety concern from tiny pieces may arise, especially if swallowed, which is important in the protection of children. It should also be noted that miniature parts from these products may hinder health screening if inside the body,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum lifting capacity of the magnetwhat affects it?

The given holding capacity of the magnet means the highest holding force, measured in ideal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet is influenced by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under parallel forces the load capacity is reduced by as much as 5 times. In addition, even a small distance {between} the magnet and the plate decreases the lifting capacity.

Exercise Caution with Neodymium Magnets

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnetic are fragile as well as can easily crack as well as get damaged.

Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

 Maintain neodymium magnets far from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98