tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. Practically all magnesy in our store are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase strong magnet? Magnetic holders in solid and airtight steel enclosure are excellent for use in difficult weather conditions, including during snow and rain see more...

magnets with holders

Holders with magnets can be applied to facilitate manufacturing, exploring underwater areas, or searching for meteors made of metal see...

Enjoy shipping of your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGGW 88x8.5 [M6] GW / N38 - magnetic holder rubber internal thread

magnetic holder rubber internal thread

Catalog no 160309

GTIN: 5906301813675

5

Diameter Ø [±0,1 mm]

88 mm

Height [±0,1 mm]

8.5 mm

Weight

186 g

Load capacity

42.9 kg / 420.71 N

40.59 with VAT / pcs + price for transport

33.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
33.00 ZŁ
40.59 ZŁ
price from 10 pcs
31.02 ZŁ
38.15 ZŁ
price from 30 pcs
29.04 ZŁ
35.72 ZŁ

Looking for a better price?

Call us +48 22 499 98 98 otherwise drop us a message using request form the contact section.
Force and appearance of magnetic components can be checked with our force calculator.

Orders submitted before 14:00 will be dispatched today!

UMGGW 88x8.5 [M6] GW / N38 - magnetic holder rubber internal thread

Specification/characteristics UMGGW 88x8.5 [M6] GW / N38 - magnetic holder rubber internal thread
properties
values
Cat. no.
160309
GTIN
5906301813675
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
88 mm [±0,1 mm]
Height
8.5 mm [±0,1 mm]
Weight
186 g [±0,1 mm]
Load capacity ~ ?
42.9 kg / 420.71 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Mounting magnets rubber-coated featuring an internal thread are applied in various fields, from production to domestic use. They are made of a strong neodymium magnet, embedded in a rubber shell, which shields the magnet from damage and improves grip on smooth substrates.
No! Magnetic holders should not be used for people with pacemakers, as the strong magnetic field may interfere with their function. In such cases, we recommend using pin-type holders — we offer two such types in our range.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetic energy, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (according to literature),
  • They show superior resistance to demagnetization from outside magnetic sources,
  • By applying a shiny layer of nickel, the element gains a clean look,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Wide application in modern technologies – they serve a purpose in hard drives, electric drives, medical equipment or even other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them ideal in miniature devices

Disadvantages of neodymium magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is notable in the family environments. Moreover, tiny components from these devices can complicate medical imaging if inside the body,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Maximum lifting capacity of the magnetwhat affects it?

The given holding capacity of the magnet corresponds to the highest holding force, calculated in ideal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

What influences lifting capacity in practice

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under shearing force the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate reduces the holding force.

Precautions

  Neodymium magnets should not be around youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnetic are known for being fragile, which can cause them to shatter.

Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Safety rules!

To show why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98