tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" on our website are available for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight, solid steel enclosure are excellent for use in variable and difficult weather conditions, including snow and rain more information...

magnets with holders

Holders with magnets can be used to enhance production processes, underwater exploration, or searching for space rocks from gold read...

We promise to ship your order on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGZ 75x34x18 [M10] GZ / N38 - magnetic holder external thread

magnetic holder external thread

Catalog no 190417

GTIN: 5906301813880

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

34 mm

Height [±0,1 mm]

18 mm

Weight

475 g

Load capacity

162 kg / 1588.68 N

189.42 with VAT / pcs + price for transport

154.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
154.00 ZŁ
189.42 ZŁ
price from 5 pcs
144.76 ZŁ
178.05 ZŁ
price from 10 pcs
135.52 ZŁ
166.69 ZŁ

Looking for a better price?

Pick up the phone and ask +48 22 499 98 98 if you prefer send us a note using inquiry form the contact page.
Specifications as well as form of magnets can be analyzed using our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

UMGZ 75x34x18 [M10] GZ / N38 - magnetic holder external thread

Specification/characteristics UMGZ 75x34x18 [M10] GZ / N38 - magnetic holder external thread
properties
values
Cat. no.
190417
GTIN
5906301813880
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
34 mm [±0,1 mm]
Height
18 mm [±0,1 mm]
Weight
475 g [±0,1 mm]
Load capacity ~ ?
162 kg / 1588.68 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic holders with neodymium magnets with external thread are modern accessories, applied in many fields, including construction, light industry, or assembly technology. Their design is based on a high-performance neodymium magnet, installed within a durable steel housing protected by an anti-corrosion layer. The external thread in sizes M4–M8 allows installation onto compatible surfaces, which enables to fasten nameplates, lighting, tools. With the help of a strong magnetic field, these holders offer a pulling strength of up to 68 kg, depending on the model and size. Applications of the holders include not only industrial operations and DIY projects. Some versions are equipped with a protective layer, that protects surfaces from scratches and increases grip. Note, however, that NdFeB magnets can be fragile and are prone to cracking under excessive tightening. Careful handling is advised, and they should be stored away from magnetic cards and electronic devices. For best quality, one should opt for certified products.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetic energy, neodymium magnets have these key benefits:

  • They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (according to literature),
  • Their ability to resist magnetic interference from external fields is impressive,
  • Because of the reflective layer of silver, the component looks aesthetically refined,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • With the option for customized forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Important function in cutting-edge sectors – they are used in data storage devices, electric motors, medical equipment or even technologically developed systems,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and reinforces its overall strength,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to damp air can corrode. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Potential hazard from tiny pieces may arise, in case of ingestion, which is crucial in the family environments. It should also be noted that tiny components from these devices might interfere with diagnostics when ingested,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Maximum lifting capacity of the magnetwhat it depends on?

The given lifting capacity of the magnet represents the maximum lifting force, calculated in a perfect environment, namely:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.

Safety Precautions

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Magnets made of neodymium are fragile as well as can easily break and get damaged.

Neodymium magnets are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Safety rules!

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98