e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all "magnets" on our website are in stock for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight and durable enclosure are perfect for use in challenging weather conditions, including snow and rain see more...

magnets with holders

Holders with magnets can be used to enhance production processes, underwater exploration, or finding meteors made of ore see more...

Order is shipped if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGZ 75x34x18 [M10] GZ / N38 - magnetic holder external thread

magnetic holder external thread

Catalog no 190417

GTIN: 5906301813880

5

Diameter Ø [±0,1 mm]

75 mm

Height [±0,1 mm]

34 mm

Height [±0,1 mm]

18 mm

Weight

475 g

Load capacity

162 kg / 1588.68 N

189.42 with VAT / pcs + price for transport

154.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
154.00 ZŁ
189.42 ZŁ
price from 5 pcs
144.76 ZŁ
178.05 ZŁ
price from 10 pcs
135.52 ZŁ
166.69 ZŁ

Not sure about your choice?

Call us +48 22 499 98 98 or drop us a message using request form the contact form page.
Lifting power as well as form of a neodymium magnet can be tested with our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

UMGZ 75x34x18 [M10] GZ / N38 - magnetic holder external thread

Specification/characteristics UMGZ 75x34x18 [M10] GZ / N38 - magnetic holder external thread
properties
values
Cat. no.
190417
GTIN
5906301813880
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
75 mm [±0,1 mm]
Height
34 mm [±0,1 mm]
Height
18 mm [±0,1 mm]
Weight
475 g [±0,1 mm]
Load capacity ~ ?
162 kg / 1588.68 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Mounts with built-in neodymium magnets with external thread are modern solutions, applied in many industries, including construction, agriculture, or advertising. Their design is based on a strong neodymium magnet, embedded within a durable metal casing coated with zinc and nickel. The external thread in sizes M3–M10 allows installation onto compatible surfaces, which enables to fasten nameplates, lighting, tools. Thanks to a strong magnetic field, these holders offer a holding force from 3 to 68 kg, depending on. Their use include both workshops and home installations. Certain models feature a rubber coating, that protects surfaces from scratches and increases grip. Note, however, that neodymium magnets are brittle and are prone to cracking under over-tightened mounting. Caution during installation is recommended, and holders should be kept away from electronics. To ensure reliability, one should opt for models from trusted manufacturers.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their power is maintained, and after approximately 10 years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is impressive,
  • In other words, due to the glossy silver coating, the magnet obtains an professional appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which broadens their application range,
  • Wide application in cutting-edge sectors – they serve a purpose in data storage devices, electric motors, healthcare devices as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them useful in small systems

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time enhances its overall strength,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is important in the family environments. It should also be noted that miniature parts from these assemblies have the potential to disrupt scanning when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Detachment force of the magnet in optimal conditionswhat it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, assessed in a perfect environment, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

Practical aspects of lifting capacity – factors

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, in contrast under shearing force the holding force is lower. Moreover, even a small distance {between} the magnet and the plate lowers the lifting capacity.

Handle Neodymium Magnets Carefully

Magnets made of neodymium are fragile and can easily break and get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets may crack or alternatively crumble with uncontrolled connecting to each other. You can't approach them to each other. At a distance less than 10 cm you should have them very strongly.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98