e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all magnesy in our store are in stock for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight and durable steel casing are perfect for use in difficult weather, including during snow and rain check...

magnets with holders

Magnetic holders can be applied to facilitate production, underwater discoveries, or locating meteorites from gold more information...

Shipping is shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x200 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130360

GTIN: 5906301813088

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

200 mm

Weight

1100 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
522.50 ZŁ
642.68 ZŁ
price from 10 pcs
495.00 ZŁ
608.85 ZŁ

Need advice?

Call us now +48 888 99 98 98 if you prefer get in touch through request form the contact page.
Specifications as well as form of magnetic components can be tested using our magnetic calculator.

Same-day shipping for orders placed before 14:00.

SM 32x200 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x200 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130360
GTIN
5906301813088
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
1100 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, placed in a casing made of stainless steel usually AISI304. In this way, it is possible to efficiently segregate ferromagnetic elements from the mixture. A key aspect of its operation is the use of repulsion of magnetic poles N and S, which enables magnetic substances to be attracted. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to extract ferromagnetic elements. If the cans are ferromagnetic, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food industry to remove metallic contaminants, such as iron fragments or iron dust. Our rollers are constructed from durable acid-resistant steel, EN 1.4301, intended for use in food.
Magnetic rollers, otherwise magnetic separators, are employed in food production, metal separation as well as recycling. They help in eliminating iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are built with a neodymium magnet placed in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 and N52.
Generally it is believed that the stronger the magnet, the more efficient it is. However, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are short. By contrast, in the case of a thicker magnet, the force lines are extended and reach further.
For making the casings of magnetic separators - rollers, frequently stainless steel is employed, particularly types AISI 304, AISI 316, and AISI 316L.
In a saltwater contact, AISI 316 steel is recommended due to its outstanding corrosion resistance.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other devices that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements is recommended be carried out once every 24 months. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their consistent magnetic energy, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
  • They are extremely resistant to demagnetization caused by external field interference,
  • Thanks to the glossy finish and silver coating, they have an aesthetic appearance,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for precise shaping or customization to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Wide application in new technology industries – they serve a purpose in HDDs, electric motors, clinical machines and high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them ideal in miniature devices

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of plastic for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
  • Safety concern due to small fragments may arise, in case of ingestion, which is important in the health of young users. Additionally, miniature parts from these assemblies can interfere with diagnostics after being swallowed,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in a perfect environment, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is influenced by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a minimal clearance {between} the magnet and the plate decreases the load capacity.

Caution with Neodymium Magnets

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets may crack or crumble with careless joining to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.

  Do not give neodymium magnets to children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are extremely fragile, leading to breaking.

Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Be careful!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98