tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are available for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnets for searching F400 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight and durable enclosure are perfect for use in challenging weather, including during snow and rain more information...

magnets with holders

Magnetic holders can be applied to enhance production, underwater discoveries, or searching for meteors from gold see more...

We promise to ship your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x200 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130360

GTIN: 5906301813088

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

200 mm

Weight

1100 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
550.00 ZŁ
676.50 ZŁ
price from 8 pcs
550.00 ZŁ
676.50 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 22 499 98 98 alternatively let us know by means of request form our website.
Strength as well as form of magnets can be verified on our force calculator.

Order by 14:00 and we’ll ship today!

SM 32x200 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x200 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130360
GTIN
5906301813088
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
1100 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. In this way, it is possible to precisely separate ferromagnetic particles from the mixture. A fundamental component of its operation is the repulsion of magnetic poles N and S, which causes magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in the food sector for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rollers are made from acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, otherwise cylindrical magnets, are employed in food production, metal separation as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets placed in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Generally it is believed that the greater the magnet's power, the more efficient it is. But, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. By contrast, when the magnet is thick, the force lines are extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, most often stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, type AISI 316 steel is highly recommended due to its excellent anti-corrosion properties.
Magnetic rollers are characterized by their specific arrangement of poles and their capability to attract magnetic substances directly onto their surface, as opposed to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out once every 24 months. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They retain their full power for nearly ten years – the drop is just ~1% (based on simulations),
  • They protect against demagnetization induced by surrounding magnetic fields very well,
  • Because of the reflective layer of silver, the component looks aesthetically refined,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the form),
  • With the option for customized forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Significant impact in new technology industries – they are utilized in HDDs, electric drives, medical equipment and sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall strength,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing complex structures directly in the magnet,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the context of child safety. It should also be noted that miniature parts from these devices have the potential to hinder health screening when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what it depends on?

The given lifting capacity of the magnet represents the maximum lifting force, determined in the best circumstances, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

Practical lifting capacity: influencing factors

The lifting capacity of a magnet depends on in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the load capacity.

Handle Neodymium Magnets Carefully

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnetic are incredibly delicate, they easily fall apart and can become damaged.

Neodymium magnetic are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

  Neodymium magnets should not be around children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Be careful!

In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98