tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. All "magnets" in our store are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to purchase strong magnet? Magnet holders in solid and airtight steel enclosure are excellent for use in variable and difficult weather, including during rain and snow see...

magnets with holders

Magnetic holders can be used to enhance manufacturing, exploring underwater areas, or locating meteorites from gold check...

Enjoy shipping of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

SM 32x200 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130360

GTIN: 5906301813088

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

200 mm

Weight

1100 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
522.50 ZŁ
642.68 ZŁ
price from 10 pcs
495.00 ZŁ
608.85 ZŁ

Hunting for a discount?

Contact us by phone +48 888 99 98 98 otherwise drop us a message by means of inquiry form our website.
Parameters and appearance of a neodymium magnet can be calculated on our force calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x200 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x200 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130360
GTIN
5906301813088
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
1100 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is the heart of every magnetic filter used in industry. It is used for cleaning bulk products (flour, sugar, granules) and liquids (oils, juices). High magnetic induction allows catching the finest iron particles.
The construction is based on a sealed stainless steel housing. The center is filled with NdFeB magnets arranged to maximize the field on the surface. Such construction ensures resistance to corrosion, water, and acids.
Due to high power, direct removal of filings can be troublesome. We recommend taping the filings and peeling them off together. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
Magnetic induction measured in Gauss (Gs) determines the magnetic flux density on the rod surface. Standard rods (~8000 Gs) are sufficient for bolts, nails, and chips. For the food and precision industry, we recommend the highest parameters.
We fulfill custom orders for bars matched to your machine. We offer various tip options: threaded holes (e.g., M8, M10), protruding screws, flat studs, or handles. We ensure fast execution of special orders.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their consistent holding force, neodymium magnets have these key benefits:

  • They retain their magnetic properties for nearly 10 years – the loss is just ~1% (based on simulations),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a polished nickel surface provides a smooth finish,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • With the right combination of magnetic alloys, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
  • The ability for precise shaping as well as adjustment to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Wide application in new technology industries – they serve a purpose in computer drives, electric motors, diagnostic apparatus as well as sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and enhances its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
  • Possible threat from tiny pieces may arise, especially if swallowed, which is crucial in the health of young users. Moreover, small elements from these magnets might disrupt scanning once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Optimal lifting capacity of a neodymium magnetwhat it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in the best circumstances, namely:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under shearing force the lifting capacity is smaller. Additionally, even a small distance {between} the magnet and the plate decreases the lifting capacity.

Precautions

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

 Maintain neodymium magnets far from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If you have a finger between or on the path of attracting magnets, there may be a serious cut or even a fracture.

Neodymium magnets are fragile as well as can easily break as well as get damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Caution!

In order to show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98