e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. All magnesy on our website are in stock for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight and durable enclosure are excellent for use in challenging weather conditions, including snow and rain read...

magnetic holders

Magnetic holders can be applied to facilitate manufacturing, underwater discoveries, or locating meteorites from gold more...

Order is always shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x200 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130360

GTIN: 5906301813088

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

200 mm

Weight

1100 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
522.50 ZŁ
642.68 ZŁ
price from 10 pcs
495.00 ZŁ
608.85 ZŁ

Hunting for a discount?

Contact us by phone +48 888 99 98 98 or let us know via contact form the contact form page.
Weight along with form of a magnet can be calculated using our magnetic calculator.

Same-day processing for orders placed before 14:00.

SM 32x200 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x200 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130360
GTIN
5906301813088
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
1100 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, placed in a casing made of stainless steel mostly AISI304. In this way, it is possible to precisely segregate ferromagnetic particles from different substances. An important element of its operation is the use of repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to separate ferromagnetic particles. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in food production for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, often called magnetic separators, are used in metal separation, food production as well as waste processing. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers are built with a neodymium magnet embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Usually it is believed that the stronger the magnet, the better. Nevertheless, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines will be short. By contrast, when the magnet is thick, the force lines will be extended and extend over a greater distance.
For creating the casings of magnetic separators - rollers, most often stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, type AISI 316 steel is highly recommended thanks to its exceptional anti-corrosion properties.
Magnetic bars are characterized by their specific arrangement of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other separators that may utilize complex filtration systems.
Technical designations and terms related to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it is recommended cleaning regularly, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and lose their power. Magnetic field measurements should be carried out once every 24 months. Caution should be taken during use, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They remain magnetized despite exposure to magnetic noise,
  • By applying a shiny layer of nickel, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is notably high,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
  • Wide application in cutting-edge sectors – they find application in data storage devices, electric motors, diagnostic apparatus along with sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and increases its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment. If exposed to rain, we recommend using waterproof magnets, such as those made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, in case of ingestion, which is significant in the family environments. Furthermore, minuscule fragments from these assemblies may hinder health screening once in the system,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what contributes to it?

The given holding capacity of the magnet represents the highest holding force, assessed under optimal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Determinants of practical lifting force of a magnet

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, in contrast under shearing force the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet and the plate decreases the lifting capacity.

Safety Precautions

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are particularly fragile, which leads to their breakage.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

 Maintain neodymium magnets away from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If the joining of neodymium magnets is not controlled, then they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should have them extremely firmly.

Pay attention!

In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98