tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. All magnesy in our store are in stock for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for fishing F400 GOLD

Where to purchase very strong magnet? Magnet holders in airtight, solid steel casing are perfect for use in variable and difficult weather, including snow and rain more...

magnetic holders

Holders with magnets can be used to improve production processes, exploring underwater areas, or searching for meteorites from gold more information...

Order is always shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 38x15 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010061

GTIN: 5906301810605

0

Diameter Ø [±0,1 mm]

38 mm

Height [±0,1 mm]

15 mm

Weight

127.59 g

Magnetization Direction

↑ axial

Load capacity

31.52 kg / 309.11 N

Magnetic Induction

384.07 mT

Coating

[NiCuNi] nickel

70.00 with VAT / pcs + price for transport

56.91 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
56.91 ZŁ
70.00 ZŁ
price from 11 pcs
53.50 ZŁ
65.80 ZŁ
price from 44 pcs
50.08 ZŁ
61.60 ZŁ

Need help making a decision?

Give us a call +48 888 99 98 98 alternatively get in touch via contact form through our site.
Force and appearance of magnets can be verified using our magnetic mass calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 38x15 / N38 - cylindrical magnet

Specification/characteristics MW 38x15 / N38 - cylindrical magnet
properties
values
Cat. no.
010061
GTIN
5906301810605
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
38 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
127.59 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
31.52 kg / 309.11 N
Magnetic Induction ~ ?
384.07 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 38x15 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which exceed traditional ferrite magnets. Thanks to their strength, they are frequently employed in devices that need powerful holding. The typical temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet designated MW 38x15 / N38 with a magnetic force 31.52 kg weighs only 127.59 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the site for the current information as well as offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very useful in various applications, they can also constitute certain risk. Due to their strong magnetic power, they can pull metallic objects with great force, which can lead to crushing skin or other surfaces, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with additional metals and then shaping and heat treating. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as gold, to shield them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A cylindrical neodymium magnet of class N52 and N50 is a powerful and strong magnetic product with the shape of a cylinder, providing high force and universal applicability. Good price, availability, resistance and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • Their strength is maintained, and after around ten years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is notable,
  • The use of a decorative silver surface provides a eye-catching finish,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
  • Important function in new technology industries – they serve a purpose in computer drives, electric motors, healthcare devices or even high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and additionally enhances its overall durability,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment, especially when used outside, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
  • Potential hazard due to small fragments may arise, when consumed by mistake, which is crucial in the family environments. It should also be noted that minuscule fragments from these devices can disrupt scanning when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Handle with Care: Neodymium Magnets

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are extremely fragile, they easily crack as well as can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or in their path when they attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Exercise caution!

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98