e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are in stock for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for fishing F400 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in airtight and durable enclosure are perfect for use in difficult, demanding weather, including snow and rain more information...

magnets with holders

Holders with magnets can be applied to improve manufacturing, underwater exploration, or searching for meteorites from gold more...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 8x6/3.5x3 / N38 - ring magnet

ring magnet

Catalog no 030206

GTIN: 5906301812234

5

Diameter [±0,1 mm]

8 mm

internal diameter Ø [±0,1 mm]

6/3.5 mm

Height [±0,1 mm]

3 mm

Weight

2.3 g

Magnetization Direction

↑ axial

Load capacity

0.81 kg / 7.94 N

Magnetic Induction

162.10 mT

Coating

[NiCuNi] nickel

0.70 with VAT / pcs + price for transport

0.57 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.57 ZŁ
0.70 ZŁ
price from 1100 pcs
0.54 ZŁ
0.66 ZŁ
price from 4400 pcs
0.50 ZŁ
0.62 ZŁ

Need advice?

Give us a call +48 888 99 98 98 if you prefer drop us a message through contact form the contact section.
Parameters as well as form of a magnet can be checked using our modular calculator.

Same-day shipping for orders placed before 14:00.

MP 8x6/3.5x3 / N38 - ring magnet

Specification/characteristics MP 8x6/3.5x3 / N38 - ring magnet
properties
values
Cat. no.
030206
GTIN
5906301812234
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
8 mm [±0,1 mm]
internal diameter Ø
6/3.5 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
2.3 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.81 kg / 7.94 N
Magnetic Induction ~ ?
162.10 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnets MP 8x6/3.5x3 / N38 in a ring form are commonly used in various industries due to their specific properties. Thanks to a powerful magnetic field of 0.81 kg, which can be described as lifting capacity, they are key in applications that require high magnetic power in a compact space. Applications of MP 8x6/3.5x3 / N38 magnets include electric motors, generating systems, audio systems, and many other devices that use magnets for producing motion or energy storage. Despite their powerful strength, they have a comparatively low weight of 2.3 grams, which makes them more practical compared to heavier alternatives.
Ring magnets work due to their atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for the creation of a concentrated magnetic field in a specific direction. This makes them perfect for devices such as stepper motors or industrial robots. Additionally, ring magnets are resistant to demagnetization.
Ring magnets have a wide range of applications in many industries, such as electronics, e.g., in the production of speakers or electric motors, the automotive industry, e.g., in the construction of electric motors, and medical equipment, e.g., in scanning devices. Thanks to their temperature resistance and precision makes them ideal for technologically advanced applications.
Ring magnets stand out high magnetic strength, ability to work in extreme conditions, and precision in generating the magnetic field. Their unique ring form allows for effective use in devices such as motors or speakers. Additionally, these magnets are more durable than traditional ferrite magnets, which has made them popular in advanced technologies and industrial applications.
Ring magnets perform excellently across a wide range of temperatures. Their magnetic properties remain stable, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. They are more resistant to loss of magnetism than traditional ferrite magnets. For this reason, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium magnet in classes N52 and N50 is a strong and powerful magnetic product with the shape of a ring, providing high force and universal applicability. Competitive price, 24h delivery, ruggedness and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
  • Their ability to resist magnetic interference from external fields is notable,
  • Thanks to the shiny finish and gold coating, they have an elegant appearance,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • With the right combination of magnetic alloys, they reach increased thermal stability, enabling operation at or above 230°C (depending on the form),
  • The ability for precise shaping as well as adaptation to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Key role in cutting-edge sectors – they are used in HDDs, electric drives, healthcare devices along with high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall strength,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can rust. Therefore, for outdoor applications, we advise waterproof types made of plastic,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
  • Safety concern from tiny pieces may arise, in case of ingestion, which is crucial in the protection of children. Moreover, miniature parts from these assemblies have the potential to hinder health screening once in the system,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum lifting capacity of the magnetwhat it depends on?

The given holding capacity of the magnet means the highest holding force, calculated under optimal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a small distance {between} the magnet and the plate decreases the lifting capacity.

Be Cautious with Neodymium Magnets

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

 Keep neodymium magnets far from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a severe pressure or even a fracture.

Neodymium magnets are highly fragile, they easily fall apart as well as can become damaged.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98