tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are available for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to purchase strong magnet? Magnetic holders in airtight, solid enclosure are excellent for use in difficult, demanding weather, including during snow and rain more...

magnetic holders

Holders with magnets can be used to facilitate manufacturing, exploring underwater areas, or searching for space rocks made of metal see more...

Enjoy shipping of your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGGW 43x6 [M4] GW / N38 - magnetic holder rubber internal thread

magnetic holder rubber internal thread

Catalog no 160307

GTIN: 5906301813651

5

Diameter Ø [±0,1 mm]

43 mm

Height [±0,1 mm]

6 mm

Weight

29 g

Load capacity

8.7 kg / 85.32 N

10.46 with VAT / pcs + price for transport

8.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
8.50 ZŁ
10.46 ZŁ
price from 50 pcs
7.99 ZŁ
9.83 ZŁ
price from 100 pcs
7.48 ZŁ
9.20 ZŁ

Looking for a better price?

Call us now +48 888 99 98 98 if you prefer let us know via request form through our site.
Lifting power as well as form of magnetic components can be tested with our our magnetic calculator.

Same-day processing for orders placed before 14:00.

UMGGW 43x6 [M4] GW / N38 - magnetic holder rubber internal thread

Specification/characteristics UMGGW 43x6 [M4] GW / N38 - magnetic holder rubber internal thread
properties
values
Cat. no.
160307
GTIN
5906301813651
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
43 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
29 g [±0,1 mm]
Load capacity ~ ?
8.7 kg / 85.32 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

They function thanks to a powerful magnetic force that holds massive items, up to several kilograms – depending on the diameter of the magnet used. They are employed in the car manufacturing sector, construction, marketing, or warehousing, where they are useful for both permanent and mobile attachment of components.
No! Magnetic holders are contraindicated for people with heart implants, as the strong magnetic field can affect their function. In this situation, we recommend using non-magnetic holders — we offer two such types in our range.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They retain their full power for nearly ten years – the loss is just ~1% (based on simulations),
  • Their ability to resist magnetic interference from external fields is notable,
  • Thanks to the glossy finish and nickel coating, they have an aesthetic appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their usage potential,
  • Wide application in new technology industries – they serve a purpose in data storage devices, rotating machines, clinical machines along with high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them useful in small systems

Disadvantages of NdFeB magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall durability,
  • They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can rust. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
  • Possible threat linked to microscopic shards may arise, if ingested accidentally, which is significant in the protection of children. It should also be noted that tiny components from these products may complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Magnetic strength at its maximum – what affects it?

The given holding capacity of the magnet represents the highest holding force, measured in ideal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with no separation
  • in a perpendicular direction of force
  • under standard ambient temperature

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, however under shearing force the holding force is lower. In addition, even a small distance {between} the magnet’s surface and the plate lowers the lifting capacity.

Handle with Care: Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 Maintain neodymium magnets far from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnetic are highly susceptible to damage, leading to breaking.

Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Exercise caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98