tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" in our store are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnets for searching F200 GOLD

Where to purchase very strong magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in difficult weather conditions, including in the rain and snow see more...

magnetic holders

Magnetic holders can be applied to enhance production, underwater exploration, or searching for space rocks from gold more...

Shipping is shipped if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMT 20x25 black / N38 - board holder

board holder

Catalog no 230263

GTIN: 5906301814269

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

25 mm

Weight

7 g

Coating

[NiCuNi] nickel

3.49 with VAT / pcs + price for transport

2.84 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.84 ZŁ
3.49 ZŁ
price from 150 pcs
2.67 ZŁ
3.28 ZŁ
price from 300 pcs
2.50 ZŁ
3.07 ZŁ

Want to talk magnets?

Call us now +48 888 99 98 98 otherwise let us know via inquiry form the contact section.
Parameters and appearance of a neodymium magnet can be estimated using our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

UMT 20x25 black / N38 - board holder

Specification/characteristics UMT 20x25 black / N38 - board holder
properties
values
Cat. no.
230263
GTIN
5906301814269
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
25 mm [±0,1 mm]
Weight
7 g [±0,1 mm]
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The best choice would be neodymium magnets pin for magnetic boards, which are characterized by outstanding strength of [N38] material when used on a magnetic board, and they stand out in terms of both color variety such as black, white, blue, green, orange, purple, red, and different sizes. Our magnetic pieces feature magnets of the largest possible size in relation to their plastic components, ensuring exceptional adhesion strength. The dimensions of the magnets range from smaller ones with an 11 mm diameter to larger ones reaching 29 mm, with heights ranging from 17 mm to 38 mm. Additionally, our pricing policy adjusts depending on the quantity of units ordered, allowing for economical solutions for wholesale purchases.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They retain their attractive force for almost 10 years – the drop is just ~1% (in theory),
  • They protect against demagnetization induced by ambient electromagnetic environments effectively,
  • Thanks to the polished finish and silver coating, they have an aesthetic appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for custom shaping and customization to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
  • Key role in new technology industries – they find application in HDDs, electric motors, healthcare devices and high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall robustness,
  • They lose power at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Safety concern linked to microscopic shards may arise, if ingested accidentally, which is important in the family environments. Moreover, tiny components from these assemblies may interfere with diagnostics when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum magnetic pulling forcewhat affects it?

The given strength of the magnet corresponds to the optimal strength, calculated under optimal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Determinants of practical lifting force of a magnet

The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed with the use of a polished steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, however under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.

Handle Neodymium Magnets with Caution

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are extremely fragile, resulting in their cracking.

Neodymium magnets are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If have a finger between or on the path of attracting magnets, there may be a large cut or a fracture.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Exercise caution!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98