UMH 42x9x46 [M6] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310429
GTIN: 5906301814580
Diameter Ø [±0,1 mm]
42 mm
Height [±0,1 mm]
46 mm
Height [±0,1 mm]
9 mm
Weight
90 g
Magnetization Direction
↑ axial
Load capacity
66 kg / 647.24 N
Coating
[NiCuNi] nickel
35.99 ZŁ with VAT / pcs + price for transport
29.26 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Call us now
+48 888 99 98 98
or drop us a message through
inquiry form
through our site.
Parameters as well as appearance of magnetic components can be checked on our
modular calculator.
Same-day processing for orders placed before 14:00.
UMH 42x9x46 [M6] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their tremendous field intensity, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (based on calculations),
- They protect against demagnetization induced by external magnetic fields remarkably well,
- In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
- The outer field strength of the magnet shows advanced magnetic properties,
- With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the form),
- The ability for custom shaping or adaptation to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
- Important function in advanced technical fields – they find application in computer drives, electromechanical systems, medical equipment as well as other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in miniature devices
Disadvantages of rare earth magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time reinforces its overall resistance,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- Limited ability to create precision features in the magnet – the use of a external casing is recommended,
- Health risk due to small fragments may arise, especially if swallowed, which is significant in the context of child safety. Additionally, miniature parts from these products can complicate medical imaging once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Detachment force of the magnet in optimal conditions – what contributes to it?
The given strength of the magnet corresponds to the optimal strength, determined under optimal conditions, namely:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with no separation
- under perpendicular detachment force
- at room temperature
Magnet lifting force in use – key factors
In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under parallel forces the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet and the plate reduces the holding force.
We Recommend Caution with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Do not give neodymium magnets to children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Magnets made of neodymium are known for their fragility, which can cause them to become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are the strongest magnets ever invented. Their power can shock you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.
Safety precautions!
In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.
