UMH 42x9x46 [M6] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310429
GTIN: 5906301814580
Diameter Ø [±0,1 mm]
42 mm
Height [±0,1 mm]
46 mm
Height [±0,1 mm]
9 mm
Weight
90 g
Magnetization Direction
↑ axial
Load capacity
66 kg / 647.24 N
Coating
[NiCuNi] nickel
35.99 ZŁ with VAT / pcs + price for transport
29.26 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Give us a call
+48 888 99 98 98
alternatively let us know via
form
through our site.
Lifting power along with structure of magnetic components can be tested using our
magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
UMH 42x9x46 [M6] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong power, neodymium magnets have these key benefits:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (according to literature),
- They show superior resistance to demagnetization from outside magnetic sources,
- The use of a decorative nickel surface provides a eye-catching finish,
- The outer field strength of the magnet shows elevated magnetic properties,
- With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
- The ability for custom shaping and customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Wide application in advanced technical fields – they find application in hard drives, electric motors, clinical machines or even high-tech tools,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall robustness,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of synthetic coating for outdoor use,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
- Possible threat linked to microscopic shards may arise, especially if swallowed, which is important in the health of young users. Furthermore, miniature parts from these magnets might complicate medical imaging if inside the body,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Best holding force of the magnet in ideal parameters – what contributes to it?
The given strength of the magnet means the optimal strength, determined in ideal conditions, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with zero air gap
- in a perpendicular direction of force
- under standard ambient temperature
Impact of factors on magnetic holding capacity in practice
The lifting capacity of a magnet is determined by in practice key elements, according to their importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate lowers the holding force.
Handle Neodymium Magnets Carefully
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Magnets made of neodymium are delicate and can easily break as well as get damaged.
Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets should not be in the vicinity youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Safety precautions!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are powerful neodymium magnets?.