MW 15x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010030
GTIN: 5906301810292
Diameter Ø [±0,1 mm]
15 mm
Height [±0,1 mm]
4 mm
Weight
5.3 g
Magnetization Direction
↑ axial
Load capacity
3.32 kg / 32.56 N
Magnetic Induction
291.60 mT
Coating
[NiCuNi] nickel
1.968 ZŁ with VAT / pcs + price for transport
1.600 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us
+48 22 499 98 98
if you prefer contact us via
form
the contact section.
Force as well as form of a magnet can be tested using our
our magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
MW 15x4 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as gold, to shield them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They virtually do not lose power, because even after ten years, the performance loss is only ~1% (according to literature),
- They show strong resistance to demagnetization from external magnetic fields,
- By applying a reflective layer of silver, the element gains a clean look,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- With the right combination of magnetic alloys, they reach significant thermal stability, enabling operation at or above 230°C (depending on the design),
- Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their usage potential,
- Significant impact in new technology industries – they serve a purpose in hard drives, electromechanical systems, clinical machines and high-tech tools,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall durability,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
- Health risk due to small fragments may arise, if ingested accidentally, which is important in the protection of children. Furthermore, minuscule fragments from these products have the potential to hinder health screening when ingested,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Breakaway strength of the magnet in ideal conditions – what contributes to it?
The given pulling force of the magnet corresponds to the maximum force, calculated in the best circumstances, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with zero air gap
- under perpendicular detachment force
- at room temperature
Determinants of lifting force in real conditions
The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured with the use of a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, whereas under parallel forces the load capacity is reduced by as much as fivefold. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the lifting capacity.
Notes with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are fragile as well as can easily crack as well as get damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
If have a finger between or on the path of attracting magnets, there may be a serious cut or even a fracture.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Caution!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
