MW 15x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010030
GTIN: 5906301810292
Diameter Ø [±0,1 mm]
15 mm
Height [±0,1 mm]
4 mm
Weight
5.3 g
Magnetization Direction
↑ axial
Load capacity
3.32 kg / 32.56 N
Magnetic Induction
291.60 mT
Coating
[NiCuNi] nickel
1.60 ZŁ with VAT / pcs + price for transport
1.30 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Call us
+48 888 99 98 98
if you prefer get in touch using
our online form
our website.
Parameters and structure of neodymium magnets can be estimated using our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
MW 15x4 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as nickel, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- Their strength remains stable, and after approximately ten years, it drops only by ~1% (according to research),
- They remain magnetized despite exposure to strong external fields,
- By applying a shiny layer of nickel, the element gains a clean look,
- They possess strong magnetic force measurable at the magnet’s surface,
- With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
- Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their application range,
- Wide application in new technology industries – they find application in data storage devices, electric motors, medical equipment as well as sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them useful in compact constructions
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and enhances its overall durability,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
- Safety concern due to small fragments may arise, when consumed by mistake, which is crucial in the protection of children. Additionally, miniature parts from these products can hinder health screening when ingested,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
We Recommend Caution with Neodymium Magnets
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
If joining of neodymium magnets is not under control, then they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should have them extremely strongly.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Magnets made of neodymium are characterized by their fragility, which can cause them to become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets should not be around youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Safety rules!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.