tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. All magnesy on our website are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in solid and airtight steel casing are perfect for use in difficult, demanding weather conditions, including snow and rain see more...

magnetic holders

Magnetic holders can be applied to improve production processes, exploring underwater areas, or searching for space rocks from gold read...

We promise to ship ordered magnets on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

MW 15x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010030

GTIN: 5906301810292

5

Diameter Ø [±0,1 mm]

15 mm

Height [±0,1 mm]

4 mm

Weight

5.3 g

Magnetization Direction

↑ axial

Load capacity

3.32 kg / 32.56 N

Magnetic Induction

291.60 mT

Coating

[NiCuNi] nickel

1.968 with VAT / pcs + price for transport

1.600 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.600 ZŁ
1.968 ZŁ
price from 400 pcs
1.504 ZŁ
1.850 ZŁ
price from 1600 pcs
1.408 ZŁ
1.732 ZŁ

Not sure where to buy?

Call us now +48 22 499 98 98 if you prefer contact us by means of request form the contact page.
Parameters along with shape of a neodymium magnet can be verified with our magnetic calculator.

Same-day processing for orders placed before 14:00.

MW 15x4 / N38 - cylindrical magnet

Specification/characteristics MW 15x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010030
GTIN
5906301810292
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
15 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
5.3 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.32 kg / 32.56 N
Magnetic Induction ~ ?
291.60 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

These rod-shaped products are made of high-performance rare earth material. This ensures high magnetic density while maintaining a small size. Model MW 15x4 / N38 has a pull force of approx. 3.32 kg. Their symmetrical shape makes them perfect for installing in sockets, generators and magnetic separators. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
The best and safest method is gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Professional industrial adhesives are best, which do not react with the nickel coating. Do not hit the magnets, as neodymium is a ceramic sinter and can easily crack upon impact.
The 'N' number indicates the maximum strength of the material. A higher value means more power for the same size. N38 is the most common choice, which provides good performance at a reasonable price. For demanding applications, we recommend grade N52, which is the strongest commercially available sinter.
Neodymium magnets are coated with a protective layer of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects against air humidity. Please note they are not water-resistant. During underwater use, the coating may be damaged, leading to corrosion and loss of power. For such tasks, we recommend hermetic sealing or ordering a special version.
These products are the heart of many industrial devices. They are used in generators and wind turbines and in magnetic separators for cleaning bulk products. Additionally, due to their precise dimensions, they are ideal for measuring systems and sensors.
Standard neodymium magnets (grade N) work safely up to 80°C. Exceeding this limit risks permanent loss of power. For work in hot environments (e.g. 120°C, 150°C, 200°C), we offer H, SH, or UH series on request. It is worth knowing that neodymium magnets do not tolerate thermal shock well.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
  • They show exceptional resistance to demagnetization from external magnetic fields,
  • Because of the lustrous layer of gold, the component looks aesthetically refined,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the form),
  • With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Wide application in new technology industries – they serve a purpose in computer drives, electric drives, healthcare devices along with technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall durability,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment – during outdoor use, we recommend using encapsulated magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing holes directly in the magnet,
  • Safety concern from tiny pieces may arise, when consumed by mistake, which is significant in the context of child safety. It should also be noted that tiny components from these devices may disrupt scanning when ingested,
  • Due to expensive raw materials, their cost is considerably higher,

Maximum lifting force for a neodymium magnet – what it depends on?

The given pulling force of the magnet represents the maximum force, calculated in the best circumstances, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

What influences lifting capacity in practice

The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a small distance {between} the magnet and the plate reduces the lifting capacity.

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will crack or crumble with uncontrolled joining to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

 Maintain neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Magnets made of neodymium are noted for their fragility, which can cause them to become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Keep neodymium magnets away from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Be careful!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98