Neodymium magnets: power you're looking for

Need reliable magnetic field? We have in stock wide selection of disc, cylindrical and ring magnets. They are ideal for home use, workshop and industrial tasks. Browse assortment available immediately.

check magnet catalog

Grips for seabed exploration

Discover your passion involving underwater treasure hunting! Our double-handle grips (F200, F400) provide grip certainty and immense power. Solid, corrosion-resistant housing and reinforced ropes will perform in any water.

find searching equipment

Magnetic solutions for business

Proven solutions for fixing non-invasive. Threaded grips (external or internal) guarantee instant organization of work on production halls. Perfect for mounting lighting, detectors and ads.

check industrial applications

🚚 Order by 14:00 – we'll ship today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 15x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010030

GTIN/EAN: 5906301810292

5.00

Diameter Ø

15 mm [±0,1 mm]

Height

4 mm [±0,1 mm]

Weight

5.3 g

Magnetization Direction

↑ axial

Load capacity

4.22 kg / 41.38 N

Magnetic Induction

291.60 mT / 2916 Gs

Coating

[NiCuNi] Nickel

1.968 with VAT / pcs + price for transport

1.600 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.600 ZŁ
1.968 ZŁ
price from 400 pcs
1.504 ZŁ
1.850 ZŁ
price from 1600 pcs
1.408 ZŁ
1.732 ZŁ
Can't decide what to choose?

Give us a call +48 22 499 98 98 if you prefer contact us through inquiry form the contact page.
Strength as well as appearance of a neodymium magnet can be calculated on our power calculator.

Orders submitted before 14:00 will be dispatched today!

Technical parameters of the product - MW 15x4 / N38 - cylindrical magnet

Specification / characteristics - MW 15x4 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010030
GTIN/EAN 5906301810292
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 15 mm [±0,1 mm]
Height 4 mm [±0,1 mm]
Weight 5.3 g
Magnetization Direction ↑ axial
Load capacity ~ ? 4.22 kg / 41.38 N
Magnetic Induction ~ ? 291.60 mT / 2916 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 15x4 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering analysis of the magnet - data

Presented data are the outcome of a physical analysis. Values are based on models for the class Nd2Fe14B. Actual conditions might slightly differ from theoretical values. Use these calculations as a supplementary guide for designers.

Table 1: Static pull force (pull vs distance) - characteristics
MW 15x4 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 2915 Gs
291.5 mT
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
medium risk
1 mm 2620 Gs
262.0 mT
3.41 kg / 7.51 lbs
3408.2 g / 33.4 N
medium risk
2 mm 2276 Gs
227.6 mT
2.57 kg / 5.67 lbs
2571.6 g / 25.2 N
medium risk
3 mm 1928 Gs
192.8 mT
1.85 kg / 4.07 lbs
1845.5 g / 18.1 N
weak grip
5 mm 1324 Gs
132.4 mT
0.87 kg / 1.92 lbs
870.3 g / 8.5 N
weak grip
10 mm 505 Gs
50.5 mT
0.13 kg / 0.28 lbs
126.7 g / 1.2 N
weak grip
15 mm 222 Gs
22.2 mT
0.02 kg / 0.05 lbs
24.4 g / 0.2 N
weak grip
20 mm 113 Gs
11.3 mT
0.01 kg / 0.01 lbs
6.3 g / 0.1 N
weak grip
30 mm 40 Gs
4.0 mT
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
weak grip
50 mm 10 Gs
1.0 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
weak grip

Table 2: Sliding force (wall)
MW 15x4 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.84 kg / 1.86 lbs
844.0 g / 8.3 N
1 mm Stal (~0.2) 0.68 kg / 1.50 lbs
682.0 g / 6.7 N
2 mm Stal (~0.2) 0.51 kg / 1.13 lbs
514.0 g / 5.0 N
3 mm Stal (~0.2) 0.37 kg / 0.82 lbs
370.0 g / 3.6 N
5 mm Stal (~0.2) 0.17 kg / 0.38 lbs
174.0 g / 1.7 N
10 mm Stal (~0.2) 0.03 kg / 0.06 lbs
26.0 g / 0.3 N
15 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MW 15x4 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
1.27 kg / 2.79 lbs
1266.0 g / 12.4 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.84 kg / 1.86 lbs
844.0 g / 8.3 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N

Table 4: Steel thickness (substrate influence) - power losses
MW 15x4 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
1 mm
25%
1.06 kg / 2.33 lbs
1055.0 g / 10.3 N
2 mm
50%
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
3 mm
75%
3.17 kg / 6.98 lbs
3165.0 g / 31.0 N
5 mm
100%
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
10 mm
100%
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
11 mm
100%
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
12 mm
100%
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N

Table 5: Working in heat (material behavior) - resistance threshold
MW 15x4 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
OK
40 °C -2.2% 4.13 kg / 9.10 lbs
4127.2 g / 40.5 N
OK
60 °C -4.4% 4.03 kg / 8.89 lbs
4034.3 g / 39.6 N
80 °C -6.6% 3.94 kg / 8.69 lbs
3941.5 g / 38.7 N
100 °C -28.8% 3.00 kg / 6.62 lbs
3004.6 g / 29.5 N

Table 6: Two magnets (repulsion) - field range
MW 15x4 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Strength (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 9.26 kg / 20.41 lbs
4 518 Gs
1.39 kg / 3.06 lbs
1389 g / 13.6 N
N/A
1 mm 8.40 kg / 18.53 lbs
5 555 Gs
1.26 kg / 2.78 lbs
1261 g / 12.4 N
7.56 kg / 16.68 lbs
~0 Gs
2 mm 7.48 kg / 16.48 lbs
5 239 Gs
1.12 kg / 2.47 lbs
1122 g / 11.0 N
6.73 kg / 14.84 lbs
~0 Gs
3 mm 6.54 kg / 14.42 lbs
4 901 Gs
0.98 kg / 2.16 lbs
981 g / 9.6 N
5.89 kg / 12.98 lbs
~0 Gs
5 mm 4.80 kg / 10.59 lbs
4 200 Gs
0.72 kg / 1.59 lbs
721 g / 7.1 N
4.32 kg / 9.53 lbs
~0 Gs
10 mm 1.91 kg / 4.21 lbs
2 648 Gs
0.29 kg / 0.63 lbs
286 g / 2.8 N
1.72 kg / 3.79 lbs
~0 Gs
20 mm 0.28 kg / 0.61 lbs
1 010 Gs
0.04 kg / 0.09 lbs
42 g / 0.4 N
0.25 kg / 0.55 lbs
~0 Gs
50 mm 0.00 kg / 0.01 lbs
128 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
79 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
52 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
36 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
26 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
19 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Protective zones (implants) - precautionary measures
MW 15x4 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 6.5 cm
Hearing aid 10 Gs (1.0 mT) 5.0 cm
Mechanical watch 20 Gs (2.0 mT) 4.0 cm
Mobile device 40 Gs (4.0 mT) 3.0 cm
Car key 50 Gs (5.0 mT) 3.0 cm
Payment card 400 Gs (40.0 mT) 1.5 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Impact energy (cracking risk) - warning
MW 15x4 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 28.99 km/h
(8.05 m/s)
0.17 J
30 mm 49.30 km/h
(13.69 m/s)
0.50 J
50 mm 63.63 km/h
(17.68 m/s)
0.83 J
100 mm 89.99 km/h
(25.00 m/s)
1.66 J

Table 9: Surface protection spec
MW 15x4 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MW 15x4 / N38

Parameter Value SI Unit / Description
Magnetic Flux 5 659 Mx 56.6 µWb
Pc Coefficient 0.37 Low (Flat)

Table 11: Hydrostatics and buoyancy
MW 15x4 / N38

Environment Effective steel pull Effect
Air (land) 4.22 kg Standard
Water (riverbed) 4.83 kg
(+0.61 kg buoyancy gain)
+14.5%
Rust risk: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Shear force

*Note: On a vertical surface, the magnet holds merely a fraction of its perpendicular strength.

2. Steel thickness impact

*Thin metal sheet (e.g. 0.5mm PC case) severely limits the holding force.

3. Thermal stability

*For N38 grade, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.37

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010030-2026
Magnet Unit Converter
Magnet pull force

Magnetic Field

See also proposals

This product is an incredibly powerful cylindrical magnet, composed of durable NdFeB material, which, at dimensions of Ø15x4 mm, guarantees optimal power. This specific item features high dimensional repeatability and professional build quality, making it an ideal solution for the most demanding engineers and designers. As a cylindrical magnet with impressive force (approx. 4.22 kg), this product is available off-the-shelf from our warehouse in Poland, ensuring quick order fulfillment. Furthermore, its Ni-Cu-Ni coating effectively protects it against corrosion in typical operating conditions, ensuring an aesthetic appearance and durability for years.
This model is created for building electric motors, advanced sensors, and efficient magnetic separators, where field concentration on a small surface counts. Thanks to the high power of 41.38 N with a weight of only 5.3 g, this rod is indispensable in miniature devices and wherever every gram matters.
Due to the brittleness of the NdFeB material, you must not use force-fitting (so-called press-fit), as this risks chipping the coating of this precision component. To ensure long-term durability in industry, anaerobic resins are used, which are safe for nickel and fill the gap, guaranteeing high repeatability of the connection.
Grade N38 is the most frequently chosen standard for industrial neodymium magnets, offering an optimal price-to-power ratio and high resistance to demagnetization. If you need the strongest magnets in the same volume (Ø15x4), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard in continuous sale in our warehouse.
This model is characterized by dimensions Ø15x4 mm, which, at a weight of 5.3 g, makes it an element with impressive magnetic energy density. The key parameter here is the lifting capacity amounting to approximately 4.22 kg (force ~41.38 N), which, with such defined dimensions, proves the high grade of the NdFeB material. The product has a [NiCuNi] coating, which secures it against external factors, giving it an aesthetic, silvery shine.
Standardly, the magnetic axis runs through the center of the cylinder, causing the greatest attraction force to occur on the bases with a diameter of 15 mm. Thanks to this, the magnet can be easily glued into a hole and achieve a strong field on the front surface. On request, we can also produce versions magnetized through the diameter if your project requires it.

Strengths and weaknesses of rare earth magnets.

Strengths

Besides their remarkable magnetic power, neodymium magnets offer the following advantages:
  • They have unchanged lifting capacity, and over nearly ten years their performance decreases symbolically – ~1% (in testing),
  • Magnets very well resist against demagnetization caused by external fields,
  • Thanks to the metallic finish, the coating of nickel, gold, or silver-plated gives an clean appearance,
  • The surface of neodymium magnets generates a concentrated magnetic field – this is a key feature,
  • Neodymium magnets are characterized by very high magnetic induction on the magnet surface and can function (depending on the shape) even at a temperature of 230°C or more...
  • Thanks to flexibility in constructing and the ability to modify to unusual requirements,
  • Key role in future technologies – they are used in hard drives, electric drive systems, diagnostic systems, also modern systems.
  • Thanks to their power density, small magnets offer high operating force, in miniature format,

Limitations

Characteristics of disadvantages of neodymium magnets and proposals for their use:
  • They are fragile upon heavy impacts. To avoid cracks, it is worth protecting magnets using a steel holder. Such protection not only shields the magnet but also improves its resistance to damage
  • NdFeB magnets lose power when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of strength (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
  • When exposed to humidity, magnets usually rust. To use them in conditions outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which prevent oxidation and corrosion.
  • We suggest casing - magnetic mechanism, due to difficulties in producing threads inside the magnet and complex forms.
  • Potential hazard to health – tiny shards of magnets can be dangerous, when accidentally swallowed, which becomes key in the context of child health protection. It is also worth noting that small components of these products can complicate diagnosis medical in case of swallowing.
  • High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which hinders application in large quantities

Holding force characteristics

Maximum magnetic pulling forcewhat affects it?

Information about lifting capacity was defined for ideal contact conditions, taking into account:
  • on a plate made of structural steel, optimally conducting the magnetic field
  • whose thickness is min. 10 mm
  • with an ground touching surface
  • with zero gap (no coatings)
  • under perpendicular application of breakaway force (90-degree angle)
  • in neutral thermal conditions

Determinants of lifting force in real conditions

Real force impacted by specific conditions, such as (from most important):
  • Space between magnet and steel – every millimeter of separation (caused e.g. by veneer or dirt) diminishes the magnet efficiency, often by half at just 0.5 mm.
  • Pull-off angle – note that the magnet holds strongest perpendicularly. Under sliding down, the capacity drops significantly, often to levels of 20-30% of the maximum value.
  • Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of generating force.
  • Material type – the best choice is pure iron steel. Cast iron may have worse magnetic properties.
  • Plate texture – ground elements ensure maximum contact, which improves field saturation. Uneven metal reduce efficiency.
  • Heat – NdFeB sinters have a negative temperature coefficient. At higher temperatures they lose power, and in frost they can be stronger (up to a certain limit).

Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a slight gap between the magnet and the plate lowers the holding force.

Warnings
Keep away from computers

Avoid bringing magnets close to a wallet, computer, or screen. The magnetic field can permanently damage these devices and wipe information from cards.

No play value

These products are not toys. Accidental ingestion of multiple magnets may result in them attracting across intestines, which poses a severe health hazard and requires urgent medical intervention.

Bone fractures

Big blocks can crush fingers instantly. Do not put your hand betwixt two attracting surfaces.

Precision electronics

An intense magnetic field negatively affects the operation of magnetometers in smartphones and navigation systems. Do not bring magnets near a device to prevent breaking the sensors.

Thermal limits

Monitor thermal conditions. Exposing the magnet to high heat will destroy its properties and pulling force.

Eye protection

Despite the nickel coating, the material is delicate and not impact-resistant. Do not hit, as the magnet may shatter into sharp, dangerous pieces.

Danger to pacemakers

Individuals with a pacemaker should maintain an safe separation from magnets. The magnetic field can disrupt the operation of the implant.

Warning for allergy sufferers

Some people have a sensitization to Ni, which is the common plating for NdFeB magnets. Extended handling might lead to an allergic reaction. We suggest wear protective gloves.

Fire risk

Fire hazard: Rare earth powder is highly flammable. Do not process magnets in home conditions as this may cause fire.

Safe operation

Before use, check safety instructions. Uncontrolled attraction can break the magnet or injure your hand. Be predictive.

Security! Looking for details? Check our post: Are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98