e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. Practically all magnesy in our store are in stock for immediate purchase (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid enclosure are ideally suited for use in difficult weather conditions, including during snow and rain check...

magnetic holders

Magnetic holders can be applied to enhance production processes, exploring underwater areas, or finding meteors made of metal more information...

Shipping always shipped if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 15x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010030

GTIN: 5906301810292

5

Diameter Ø [±0,1 mm]

15 mm

Height [±0,1 mm]

4 mm

Weight

5.3 g

Magnetization Direction

↑ axial

Load capacity

3.32 kg / 32.56 N

Magnetic Induction

291.60 mT

Coating

[NiCuNi] nickel

1.968 with VAT / pcs + price for transport

1.600 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.600 ZŁ
1.968 ZŁ
price from 400 pcs
1.504 ZŁ
1.850 ZŁ
price from 1600 pcs
1.408 ZŁ
1.732 ZŁ

Not sure which magnet to buy?

Give us a call +48 888 99 98 98 alternatively drop us a message using form through our site.
Force along with appearance of magnets can be analyzed with our modular calculator.

Same-day processing for orders placed before 14:00.

MW 15x4 / N38 - cylindrical magnet

Specification/characteristics MW 15x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010030
GTIN
5906301810292
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
15 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
5.3 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.32 kg / 32.56 N
Magnetic Induction ~ ?
291.60 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical magnets from this series are made of the strongest magnetic material in the world. This guarantees huge pull force while maintaining compact dimensions. Model MW 15x4 / N38 has a pull force of approx. 3.32 kg. Their symmetrical shape makes them ideal for mounting in drilled holes, generators and filters. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
We recommend installation by gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Professional industrial adhesives are best, which are safe for the anti-corrosion layer. Never hammer the magnets, as neodymium is a ceramic sinter and can easily crack upon impact.
The grade symbol (e.g. N38, N52) defines the magnetic energy density of the material. The higher the number, the stronger the magnet for the same size. The universal option is N38, which provides good performance at a reasonable price. For demanding applications, we recommend grade N52, which is the most powerful option on the market.
Neodymium magnets are coated with a protective layer of Ni-Cu-Ni (Nickel-Copper-Nickel), which provides basic protection. This is not a hermetic barrier. With constant contact with water or rain, the coating may be damaged, leading to rusting of the magnet. For such tasks, we suggest enclosing them in a sealed housing or ordering a special version.
Cylindrical magnets are a key component of many modern machines. They are utilized in electric drives and in magnetic separators for cleaning bulk products. Additionally, due to their precise dimensions, they are ideal for measuring systems and sensors.
Standard neodymium magnets (grade N) work safely up to 80°C. Exceeding this limit risks permanent loss of power. For more demanding conditions (e.g. 120°C, 150°C, 200°C), ask about high-temperature versions (H, SH, UH). Please note that magnets are sensitive to rapid temperature changes.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous strength, neodymium magnets offer the following advantages:

  • They do not lose their strength around 10 years – the decrease of lifting capacity is only ~1% (according to tests),
  • They show superior resistance to demagnetization from external field exposure,
  • In other words, due to the glossy gold coating, the magnet obtains an aesthetic appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for accurate shaping or customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Significant impact in cutting-edge sectors – they are used in computer drives, electric drives, healthcare devices and high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of plastic for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
  • Health risk due to small fragments may arise, in case of ingestion, which is crucial in the family environments. Moreover, miniature parts from these magnets can interfere with diagnostics if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Maximum lifting capacity of the magnetwhat contributes to it?

The given strength of the magnet represents the optimal strength, assessed in ideal conditions, namely:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • at room temperature

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under perpendicular forces, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet and the plate reduces the holding force.

Handle with Care: Neodymium Magnets

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets bounce and also clash mutually within a radius of several to around 10 cm from each other.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnetic are fragile as well as can easily crack and shatter.

Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Safety rules!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98