e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. All "magnets" in our store are in stock for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnet for searching F300 GOLD

Where to buy strong magnet? Magnet holders in solid and airtight enclosure are perfect for use in difficult weather conditions, including snow and rain read...

magnets with holders

Holders with magnets can be used to improve production processes, exploring underwater areas, or searching for meteors made of ore check...

Enjoy shipping of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 15x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010030

GTIN: 5906301810292

5

Diameter Ø [±0,1 mm]

15 mm

Height [±0,1 mm]

4 mm

Weight

5.3 g

Magnetization Direction

↑ axial

Load capacity

3.32 kg / 32.56 N

Magnetic Induction

291.60 mT

Coating

[NiCuNi] nickel

1.60 with VAT / pcs + price for transport

1.30 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.30 ZŁ
1.60 ZŁ
price from 462 pcs
1.22 ZŁ
1.50 ZŁ
price from 1693 pcs
1.14 ZŁ
1.41 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 15x4 / N38 - cylindrical magnet

Specification/characteristics MW 15x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010030
GTIN
5906301810292
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
15 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
5.3 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.32 kg / 32.56 N
Magnetic Induction ~ ?
291.60 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 15x4 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which exceed traditional ferrite magnets. Because of their strength, they are often used in products that require strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is also very popular among neodymium magnets. The magnet with the designation MW 15x4 / N38 with a magnetic strength 3.32 kg weighs only 5.3 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to check the site for the latest information and promotions, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very useful in various applications, they can also constitute certain dangers. Due to their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin or other surfaces, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with additional metals and then forming and thermal processing. Their amazing magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as epoxy, to protect them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose power over time. After about 10 years, their power decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in various forms and dimensions, which enhances their versatility in applications.
  • Key role in advanced technologically fields – are used in computer drives, electric drive mechanisms, medical equipment or very advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard arising from small pieces of magnets pose a threat, if swallowed, which becomes significant in the context of child safety. Furthermore, tiny parts of these magnets can be problematic in medical diagnosis when they are in the body.

Caution with Neodymium Magnets

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will jump and also touch together within a distance of several to around 10 cm from each other.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are known for being fragile, which can cause them to shatter.

Neodymium magnetic are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Caution!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98