AM ucho [M12] - magnetic accessories
magnetic accessories
Catalog no 080347
GTIN: 5906301812500
Weight
101.5 g
Load capacity
480 kg / 4707.19 N
9.84 ZŁ with VAT / pcs + price for transport
8.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us now
+48 22 499 98 98
if you prefer contact us by means of
contact form
the contact section.
Strength as well as structure of a neodymium magnet can be checked on our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
AM ucho [M12] - magnetic accessories
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They retain their magnetic properties for almost ten years – the drop is just ~1% (according to analyses),
- They are very resistant to demagnetization caused by external magnetic sources,
- Because of the reflective layer of silver, the component looks visually appealing,
- Magnetic induction on the surface of these magnets is impressively powerful,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which increases their functional possibilities,
- Key role in new technology industries – they are used in HDDs, electric drives, medical equipment or even high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in small systems
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall strength,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to damp air can rust. Therefore, for outdoor applications, we recommend waterproof types made of non-metallic composites,
- Limited ability to create threads in the magnet – the use of a external casing is recommended,
- Health risk linked to microscopic shards may arise, especially if swallowed, which is important in the family environments. It should also be noted that minuscule fragments from these assemblies may complicate medical imaging when ingested,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Maximum magnetic pulling force – what contributes to it?
The given strength of the magnet means the optimal strength, determined in the best circumstances, specifically:
- with mild steel, used as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- with zero air gap
- under perpendicular detachment force
- under standard ambient temperature
Magnet lifting force in use – key factors
The lifting capacity of a magnet is influenced by in practice key elements, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, however under shearing force the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate decreases the load capacity.
Precautions
Magnets made of neodymium are delicate as well as can easily crack and get damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
If have a finger between or on the path of attracting magnets, there may be a serious cut or a fracture.
Neodymium magnets should not be around youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can become demagnetized at high temperatures.
Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Be careful!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
