UMT 12x20 purple / N38 - board holder
board holder
Catalog no 230280
GTIN: 5906301814320
Diameter Ø [±0,1 mm]
12 mm
Height [±0,1 mm]
20 mm
Weight
3.5 g
Coating
[NiCuNi] nickel
1.89 ZŁ with VAT / pcs + price for transport
1.54 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us
+48 22 499 98 98
or get in touch by means of
form
the contact form page.
Lifting power and form of a magnet can be tested using our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
UMT 12x20 purple / N38 - board holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior power, neodymium magnets have these key benefits:
- They retain their attractive force for around ten years – the drop is just ~1% (in theory),
- They show exceptional resistance to demagnetization from external magnetic fields,
- Because of the lustrous layer of silver, the component looks high-end,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping and adaptation to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
- Important function in cutting-edge sectors – they are utilized in data storage devices, electric motors, medical equipment as well as technologically developed systems,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall strength,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a wet environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of polymer,
- Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
- Possible threat related to magnet particles may arise, especially if swallowed, which is notable in the context of child safety. Additionally, minuscule fragments from these assemblies have the potential to complicate medical imaging after being swallowed,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Handle Neodymium Magnets with Caution
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
Neodymium magnets are the most powerful magnets ever created, and their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
It is important to keep neodymium magnets out of reach from youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are highly susceptible to damage, leading to their cracking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Safety rules!
In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.