tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. All "magnets" in our store are in stock for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnets for fishing F300 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight, solid enclosure are perfect for use in difficult weather, including in the rain and snow more information...

magnets with holders

Holders with magnets can be applied to facilitate production processes, underwater discoveries, or finding meteorites from gold see more...

We promise to ship ordered magnets if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships tomorrow

MW 20x5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010044

GTIN: 5906301810438

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

5 mm

Weight

11.78 g

Magnetization Direction

↑ axial

Load capacity

5.53 kg / 54.23 N

Magnetic Induction

277.16 mT

Coating

[NiCuNi] nickel

5.56 with VAT / pcs + price for transport

4.52 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
4.52 ZŁ
5.56 ZŁ
price from 150 pcs
4.25 ZŁ
5.23 ZŁ
price from 600 pcs
3.98 ZŁ
4.89 ZŁ

Not sure where to buy?

Give us a call +48 888 99 98 98 if you prefer send us a note through inquiry form through our site.
Force as well as shape of a magnet can be analyzed with our force calculator.

Same-day processing for orders placed before 14:00.

MW 20x5 / N38 - cylindrical magnet

Specification/characteristics MW 20x5 / N38 - cylindrical magnet
properties
values
Cat. no.
010044
GTIN
5906301810438
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
11.78 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5.53 kg / 54.23 N
Magnetic Induction ~ ?
277.16 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical magnets from this series are made of the strongest magnetic material in the world. This ensures powerful holding force while maintaining a small size. Model MW 20x5 / N38 has a pull force of approx. 5.53 kg. The cylindrical form makes them excellent for mounting in drilled holes, electric motors and filters. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
It is best to use adhesive to fix the magnet into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Use strong epoxy resins, which do not react with the nickel coating. Avoid press-fitting with force, as neodymium is a brittle material and can easily crack upon impact.
The 'N' number indicates the maximum strength of the material. Larger numbers indicate a stronger magnetic field for the same size. N38 is the most common choice, which provides an optimal price-to-power ratio. For demanding applications, we recommend grade N52, which is the strongest commercially available sinter.
We use a protective plating of Ni-Cu-Ni (Nickel-Copper-Nickel), which provides basic protection. This is not a hermetic barrier. During underwater use, the coating may be damaged, leading to corrosion and loss of power. For such tasks, we suggest enclosing them in a sealed housing or ordering a special version.
Their wide application covers advanced technologies. They are used in generators and wind turbines and in filters catching metal filings. Additionally, due to their precise dimensions, they are indispensable in Hall effect sensors.
The maximum operating temperature for the standard version is 80°C (176°F). Higher temperatures can cause irreversible demagnetization. For more demanding conditions (e.g. 120°C, 150°C, 200°C), ask about high-temperature versions (H, SH, UH). It is worth knowing that neodymium magnets do not tolerate thermal shock well.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They have unchanged lifting capacity, and over more than ten years their attraction force decreases symbolically – ~1% (in testing),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • The use of a decorative nickel surface provides a eye-catching finish,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for precise shaping as well as customization to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Significant impact in new technology industries – they are utilized in computer drives, electromechanical systems, healthcare devices or even high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall strength,
  • They lose power at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment. If exposed to rain, we recommend using waterproof magnets, such as those made of non-metallic materials,
  • Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
  • Possible threat from tiny pieces may arise, in case of ingestion, which is notable in the protection of children. Additionally, small elements from these devices might complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Magnetic strength at its maximum – what contributes to it?

The given holding capacity of the magnet represents the highest holding force, calculated under optimal conditions, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • at room temperature

What influences lifting capacity in practice

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, however under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the lifting capacity.

Safety Precautions

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Neodymium magnetic are delicate and can easily break as well as get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

  Magnets are not toys, youngest should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a significant pressure or a fracture.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Be careful!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98