tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. All "magnets" on our website are in stock for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in solid and airtight steel casing are ideally suited for use in difficult weather conditions, including during snow and rain see...

magnets with holders

Holders with magnets can be used to facilitate production processes, underwater discoveries, or locating space rocks made of metal read...

Enjoy shipping of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010044

GTIN: 5906301810438

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

5 mm

Weight

11.78 g

Magnetization Direction

↑ axial

Load capacity

5.53 kg / 54.23 N

Magnetic Induction

277.16 mT

Coating

[NiCuNi] nickel

5.56 with VAT / pcs + price for transport

4.52 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
4.52 ZŁ
5.56 ZŁ
price from 150 pcs
4.25 ZŁ
5.23 ZŁ
price from 600 pcs
3.98 ZŁ
4.89 ZŁ

Want to negotiate?

Call us now +48 22 499 98 98 otherwise get in touch by means of request form the contact section.
Specifications and form of a neodymium magnet can be analyzed on our force calculator.

Orders submitted before 14:00 will be dispatched today!

MW 20x5 / N38 - cylindrical magnet

Specification/characteristics MW 20x5 / N38 - cylindrical magnet
properties
values
Cat. no.
010044
GTIN
5906301810438
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
11.78 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5.53 kg / 54.23 N
Magnetic Induction ~ ?
277.16 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 20x5 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which exceed traditional iron magnets. Because of their power, they are often used in devices that require powerful holding. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet designated MW 20x5 / N38 and a magnetic strength 5.53 kg has a weight of only 11.78 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of silver to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the website for the current information as well as promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are useful in many applications, they can also constitute certain dangers. Due to their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin and other materials, especially be careful with fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with other metals and then shaping and thermal processing. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as gold, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.
A neodymium magnet in classes N50 and N52 is a strong and powerful magnetic piece shaped like a cylinder, that offers strong holding power and universal application. Competitive price, availability, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional field intensity, neodymium magnets offer the following advantages:

  • They retain their attractive force for almost ten years – the drop is just ~1% (in theory),
  • They show superior resistance to demagnetization from outside magnetic sources,
  • In other words, due to the shiny silver coating, the magnet obtains an stylish appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their application range,
  • Important function in modern technologies – they serve a purpose in HDDs, rotating machines, clinical machines along with technologically developed systems,
  • Thanks to their power density, small magnets offer high magnetic performance, with minimal size,

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time reinforces its overall robustness,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
  • Possible threat linked to microscopic shards may arise, if ingested accidentally, which is notable in the protection of children. It should also be noted that miniature parts from these magnets have the potential to disrupt scanning once in the system,
  • Due to expensive raw materials, their cost is above average,

Detachment force of the magnet in optimal conditionswhat it depends on?

The given strength of the magnet represents the optimal strength, assessed in the best circumstances, that is:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • under standard ambient temperature

Impact of factors on magnetic holding capacity in practice

The lifting capacity of a magnet depends on in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.

Handle with Care: Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnetic are characterized by being fragile, which can cause them to shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Neodymium magnets jump and also clash mutually within a distance of several to around 10 cm from each other.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Avoid bringing neodymium magnets close to a phone or GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Be careful!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98