Neodymiums – complete shape selection

Want to buy really powerful magnets? We offer rich assortment of various shapes and sizes. They are ideal for home use, workshop and industrial tasks. See products in stock.

discover magnet catalog

Equipment for treasure hunters

Start your adventure with treasure salvaging! Our double-handle grips (F200, F400) provide safety guarantee and huge lifting capacity. Stainless steel construction and reinforced ropes will perform in any water.

choose your water magnet

Industrial magnetic grips industrial

Reliable solutions for fixing without drilling. Threaded grips (M8, M10, M12) guarantee quick improvement of work on warehouses. They are indispensable installing lamps, sensors and ads.

see available threads

📦 Fast shipping: buy by 14:00, package goes out today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 20x5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010044

GTIN/EAN: 5906301810438

5.00

Diameter Ø

20 mm [±0,1 mm]

Height

5 mm [±0,1 mm]

Weight

11.78 g

Magnetization Direction

↑ axial

Load capacity

6.93 kg / 67.95 N

Magnetic Induction

277.16 mT / 2772 Gs

Coating

[NiCuNi] Nickel

5.56 with VAT / pcs + price for transport

4.52 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
4.52 ZŁ
5.56 ZŁ
price from 150 pcs
4.25 ZŁ
5.23 ZŁ
price from 600 pcs
3.98 ZŁ
4.89 ZŁ
Need help making a decision?

Pick up the phone and ask +48 888 99 98 98 or contact us via our online form the contact form page.
Parameters and shape of magnetic components can be checked using our power calculator.

Same-day shipping for orders placed before 14:00.

Technical specification - MW 20x5 / N38 - cylindrical magnet

Specification / characteristics - MW 20x5 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010044
GTIN/EAN 5906301810438
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 20 mm [±0,1 mm]
Height 5 mm [±0,1 mm]
Weight 11.78 g
Magnetization Direction ↑ axial
Load capacity ~ ? 6.93 kg / 67.95 N
Magnetic Induction ~ ? 277.16 mT / 2772 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 20x5 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the assembly - data

The following information are the direct effect of a physical calculation. Values were calculated on models for the material Nd2Fe14B. Actual performance may differ from theoretical values. Please consider these data as a preliminary roadmap for designers.

Table 1: Static force (force vs distance) - interaction chart
MW 20x5 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 2771 Gs
277.1 mT
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
strong
1 mm 2573 Gs
257.3 mT
5.97 kg / 13.17 lbs
5975.0 g / 58.6 N
strong
2 mm 2340 Gs
234.0 mT
4.94 kg / 10.89 lbs
4940.1 g / 48.5 N
strong
3 mm 2092 Gs
209.2 mT
3.95 kg / 8.70 lbs
3948.3 g / 38.7 N
strong
5 mm 1611 Gs
161.1 mT
2.34 kg / 5.17 lbs
2343.4 g / 23.0 N
strong
10 mm 775 Gs
77.5 mT
0.54 kg / 1.19 lbs
541.6 g / 5.3 N
weak grip
15 mm 387 Gs
38.7 mT
0.13 kg / 0.30 lbs
135.0 g / 1.3 N
weak grip
20 mm 211 Gs
21.1 mT
0.04 kg / 0.09 lbs
40.2 g / 0.4 N
weak grip
30 mm 80 Gs
8.0 mT
0.01 kg / 0.01 lbs
5.7 g / 0.1 N
weak grip
50 mm 20 Gs
2.0 mT
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
weak grip

Table 2: Shear capacity (wall)
MW 20x5 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 1.39 kg / 3.06 lbs
1386.0 g / 13.6 N
1 mm Stal (~0.2) 1.19 kg / 2.63 lbs
1194.0 g / 11.7 N
2 mm Stal (~0.2) 0.99 kg / 2.18 lbs
988.0 g / 9.7 N
3 mm Stal (~0.2) 0.79 kg / 1.74 lbs
790.0 g / 7.7 N
5 mm Stal (~0.2) 0.47 kg / 1.03 lbs
468.0 g / 4.6 N
10 mm Stal (~0.2) 0.11 kg / 0.24 lbs
108.0 g / 1.1 N
15 mm Stal (~0.2) 0.03 kg / 0.06 lbs
26.0 g / 0.3 N
20 mm Stal (~0.2) 0.01 kg / 0.02 lbs
8.0 g / 0.1 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Vertical assembly (sliding) - vertical pull
MW 20x5 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
2.08 kg / 4.58 lbs
2079.0 g / 20.4 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
1.39 kg / 3.06 lbs
1386.0 g / 13.6 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.69 kg / 1.53 lbs
693.0 g / 6.8 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
3.47 kg / 7.64 lbs
3465.0 g / 34.0 N

Table 4: Steel thickness (substrate influence) - sheet metal selection
MW 20x5 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.69 kg / 1.53 lbs
693.0 g / 6.8 N
1 mm
25%
1.73 kg / 3.82 lbs
1732.5 g / 17.0 N
2 mm
50%
3.47 kg / 7.64 lbs
3465.0 g / 34.0 N
3 mm
75%
5.20 kg / 11.46 lbs
5197.5 g / 51.0 N
5 mm
100%
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
10 mm
100%
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
11 mm
100%
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
12 mm
100%
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N

Table 5: Thermal resistance (stability) - thermal limit
MW 20x5 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
OK
40 °C -2.2% 6.78 kg / 14.94 lbs
6777.5 g / 66.5 N
OK
60 °C -4.4% 6.63 kg / 14.61 lbs
6625.1 g / 65.0 N
80 °C -6.6% 6.47 kg / 14.27 lbs
6472.6 g / 63.5 N
100 °C -28.8% 4.93 kg / 10.88 lbs
4934.2 g / 48.4 N

Table 6: Two magnets (repulsion) - forces in the system
MW 20x5 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Lateral Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 14.87 kg / 32.79 lbs
4 380 Gs
2.23 kg / 4.92 lbs
2231 g / 21.9 N
N/A
1 mm 13.89 kg / 30.63 lbs
5 357 Gs
2.08 kg / 4.59 lbs
2084 g / 20.4 N
12.50 kg / 27.57 lbs
~0 Gs
2 mm 12.82 kg / 28.27 lbs
5 146 Gs
1.92 kg / 4.24 lbs
1923 g / 18.9 N
11.54 kg / 25.44 lbs
~0 Gs
3 mm 11.71 kg / 25.82 lbs
4 918 Gs
1.76 kg / 3.87 lbs
1757 g / 17.2 N
10.54 kg / 23.24 lbs
~0 Gs
5 mm 9.51 kg / 20.97 lbs
4 433 Gs
1.43 kg / 3.15 lbs
1427 g / 14.0 N
8.56 kg / 18.88 lbs
~0 Gs
10 mm 5.03 kg / 11.09 lbs
3 223 Gs
0.75 kg / 1.66 lbs
754 g / 7.4 N
4.53 kg / 9.98 lbs
~0 Gs
20 mm 1.16 kg / 2.56 lbs
1 549 Gs
0.17 kg / 0.38 lbs
174 g / 1.7 N
1.05 kg / 2.31 lbs
~0 Gs
50 mm 0.03 kg / 0.07 lbs
251 Gs
0.00 kg / 0.01 lbs
5 g / 0.0 N
0.03 kg / 0.06 lbs
~0 Gs
60 mm 0.01 kg / 0.03 lbs
159 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.02 lbs
~0 Gs
70 mm 0.01 kg / 0.01 lbs
107 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.01 lbs
75 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
54 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
41 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Hazards (implants) - precautionary measures
MW 20x5 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 8.5 cm
Hearing aid 10 Gs (1.0 mT) 6.5 cm
Mechanical watch 20 Gs (2.0 mT) 5.5 cm
Mobile device 40 Gs (4.0 mT) 4.0 cm
Car key 50 Gs (5.0 mT) 4.0 cm
Payment card 400 Gs (40.0 mT) 1.5 cm
HDD hard drive 600 Gs (60.0 mT) 1.5 cm

Table 8: Dynamics (kinetic energy) - warning
MW 20x5 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 25.63 km/h
(7.12 m/s)
0.30 J
30 mm 42.39 km/h
(11.77 m/s)
0.82 J
50 mm 54.70 km/h
(15.19 m/s)
1.36 J
100 mm 77.35 km/h
(21.49 m/s)
2.72 J

Table 9: Coating parameters (durability)
MW 20x5 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Flux)
MW 20x5 / N38

Parameter Value SI Unit / Description
Magnetic Flux 9 675 Mx 96.7 µWb
Pc Coefficient 0.35 Low (Flat)

Table 11: Physics of underwater searching
MW 20x5 / N38

Environment Effective steel pull Effect
Air (land) 6.93 kg Standard
Water (riverbed) 7.93 kg
(+1.00 kg buoyancy gain)
+14.5%
Rust risk: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Sliding resistance

*Note: On a vertical surface, the magnet holds merely approx. 20-30% of its perpendicular strength.

2. Steel saturation

*Thin steel (e.g. computer case) significantly limits the holding force.

3. Power loss vs temp

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.35

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Environmental data
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010044-2026
Measurement Calculator
Magnet pull force

Magnetic Field

View also deals

This product is an extremely powerful rod magnet, produced from durable NdFeB material, which, at dimensions of Ø20x5 mm, guarantees maximum efficiency. The MW 20x5 / N38 component is characterized by high dimensional repeatability and industrial build quality, making it an excellent solution for professional engineers and designers. As a magnetic rod with significant force (approx. 6.93 kg), this product is in stock from our European logistics center, ensuring rapid order fulfillment. Furthermore, its Ni-Cu-Ni coating shields it against corrosion in typical operating conditions, guaranteeing an aesthetic appearance and durability for years.
It finds application in modeling, advanced automation, and broadly understood industry, serving as a positioning or actuating element. Thanks to the high power of 67.95 N with a weight of only 11.78 g, this rod is indispensable in miniature devices and wherever every gram matters.
Since our magnets have a tolerance of ±0.1mm, the recommended way is to glue them into holes with a slightly larger diameter (e.g., 20.1 mm) using epoxy glues. To ensure stability in industry, anaerobic resins are used, which do not react with the nickel coating and fill the gap, guaranteeing durability of the connection.
Magnets NdFeB grade N38 are suitable for the majority of applications in modeling and machine building, where excessive miniaturization with maximum force is not required. If you need even stronger magnets in the same volume (Ø20x5), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard in continuous sale in our warehouse.
This model is characterized by dimensions Ø20x5 mm, which, at a weight of 11.78 g, makes it an element with impressive magnetic energy density. The value of 67.95 N means that the magnet is capable of holding a weight many times exceeding its own mass of 11.78 g. The product has a [NiCuNi] coating, which protects the surface against external factors, giving it an aesthetic, silvery shine.
This rod magnet is magnetized axially (along the height of 5 mm), which means that the N and S poles are located on the flat, circular surfaces. Thanks to this, the magnet can be easily glued into a hole and achieve a strong field on the front surface. On request, we can also produce versions magnetized diametrically if your project requires it.

Strengths and weaknesses of rare earth magnets.

Pros

Besides their tremendous field intensity, neodymium magnets offer the following advantages:
  • They retain attractive force for nearly 10 years – the loss is just ~1% (based on simulations),
  • Magnets very well protect themselves against loss of magnetization caused by external fields,
  • The use of an refined coating of noble metals (nickel, gold, silver) causes the element to present itself better,
  • The surface of neodymium magnets generates a intense magnetic field – this is a distinguishing feature,
  • Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
  • Possibility of precise creating as well as adjusting to concrete requirements,
  • Fundamental importance in electronics industry – they serve a role in hard drives, electric motors, diagnostic systems, also technologically advanced constructions.
  • Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in compact dimensions, which allows their use in miniature devices

Weaknesses

Problematic aspects of neodymium magnets: application proposals
  • At very strong impacts they can break, therefore we recommend placing them in steel cases. A metal housing provides additional protection against damage and increases the magnet's durability.
  • Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of strength (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
  • Magnets exposed to a humid environment can rust. Therefore during using outdoors, we advise using waterproof magnets made of rubber, plastic or other material protecting against moisture
  • Due to limitations in producing threads and complicated shapes in magnets, we recommend using casing - magnetic mechanism.
  • Health risk to health – tiny shards of magnets can be dangerous, if swallowed, which gains importance in the context of child health protection. Additionally, tiny parts of these magnets can disrupt the diagnostic process medical when they are in the body.
  • High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which increases costs of application in large quantities

Holding force characteristics

Maximum magnetic pulling forcewhat affects it?

The load parameter shown refers to the peak performance, measured under optimal environment, namely:
  • using a sheet made of high-permeability steel, serving as a ideal flux conductor
  • possessing a thickness of min. 10 mm to avoid saturation
  • with an ideally smooth touching surface
  • under conditions of no distance (metal-to-metal)
  • for force acting at a right angle (pull-off, not shear)
  • at temperature approx. 20 degrees Celsius

Impact of factors on magnetic holding capacity in practice

Bear in mind that the working load will differ subject to elements below, in order of importance:
  • Distance (betwixt the magnet and the metal), since even a tiny distance (e.g. 0.5 mm) can cause a drastic drop in force by up to 50% (this also applies to paint, rust or debris).
  • Load vector – highest force is available only during pulling at a 90° angle. The force required to slide of the magnet along the surface is typically many times lower (approx. 1/5 of the lifting capacity).
  • Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field penetrates through instead of converting into lifting capacity.
  • Steel type – low-carbon steel gives the best results. Alloy admixtures decrease magnetic properties and lifting capacity.
  • Surface finish – ideal contact is obtained only on smooth steel. Rough texture reduce the real contact area, weakening the magnet.
  • Thermal conditions – NdFeB sinters have a negative temperature coefficient. When it is hot they lose power, and in frost gain strength (up to a certain limit).

Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the holding force is lower. In addition, even a minimal clearance between the magnet’s surface and the plate reduces the lifting capacity.

Precautions when working with neodymium magnets
Life threat

Warning for patients: Powerful magnets disrupt electronics. Maintain at least 30 cm distance or request help to work with the magnets.

Flammability

Powder generated during grinding of magnets is self-igniting. Do not drill into magnets without proper cooling and knowledge.

Power loss in heat

Monitor thermal conditions. Exposing the magnet to high heat will ruin its magnetic structure and pulling force.

Magnetic interference

Remember: rare earth magnets produce a field that confuses sensitive sensors. Maintain a safe distance from your mobile, tablet, and GPS.

Powerful field

Be careful. Rare earth magnets act from a long distance and snap with huge force, often quicker than you can react.

Safe distance

Avoid bringing magnets close to a purse, computer, or TV. The magnetic field can irreversibly ruin these devices and erase data from cards.

Warning for allergy sufferers

Some people experience a contact allergy to nickel, which is the common plating for neodymium magnets. Frequent touching can result in skin redness. We recommend use safety gloves.

Crushing risk

Watch your fingers. Two large magnets will snap together immediately with a force of several hundred kilograms, destroying everything in their path. Exercise extreme caution!

This is not a toy

Product intended for adults. Small elements can be swallowed, leading to severe trauma. Keep out of reach of children and animals.

Fragile material

Despite the nickel coating, the material is delicate and cannot withstand shocks. Do not hit, as the magnet may crumble into hazardous fragments.

Safety First! More info about risks in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98