tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. Practically all "neodymium magnets" on our website are available for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnets for fishing F300 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in airtight and durable steel enclosure are perfect for use in difficult weather, including in the rain and snow more information...

magnets with holders

Magnetic holders can be used to improve production, underwater discoveries, or searching for meteors made of metal see more...

We promise to ship ordered magnets if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

MW 20x5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010044

GTIN: 5906301810438

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

5 mm

Weight

11.78 g

Magnetization Direction

↑ axial

Load capacity

5.53 kg / 54.23 N

Magnetic Induction

277.16 mT

Coating

[NiCuNi] nickel

5.56 with VAT / pcs + price for transport

4.52 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
4.52 ZŁ
5.56 ZŁ
price from 150 pcs
4.25 ZŁ
5.23 ZŁ
price from 600 pcs
3.98 ZŁ
4.89 ZŁ

Hunting for a discount?

Call us +48 22 499 98 98 otherwise send us a note through inquiry form the contact form page.
Weight and appearance of magnets can be checked using our online calculation tool.

Same-day shipping for orders placed before 14:00.

MW 20x5 / N38 - cylindrical magnet

Specification/characteristics MW 20x5 / N38 - cylindrical magnet
properties
values
Cat. no.
010044
GTIN
5906301810438
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
11.78 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5.53 kg / 54.23 N
Magnetic Induction ~ ?
277.16 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

These rod-shaped products are made of high-performance rare earth material. This ensures powerful holding force while maintaining a small size. Model MW 20x5 / N38 has a pull force of approx. 5.53 kg. The cylindrical form makes them perfect for installing in sockets, generators and magnetic separators. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
It is best to use adhesive to fix the magnet into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). We recommend two-component (epoxy) glues, which do not react with the nickel coating. Avoid press-fitting with force, as neodymium is a brittle material and is prone to chipping upon impact.
The 'N' number indicates the maximum strength of the material. Larger numbers indicate a stronger magnetic field for the same size. The universal option is N38, which provides good performance at a reasonable price. For demanding applications, we recommend grade N52, which is the strongest commercially available sinter.
Neodymium magnets are coated with a protective layer of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects against air humidity. However, they are not fully waterproof. In outdoor or wet conditions, the coating may be damaged, leading to corrosion and loss of power. For such tasks, we recommend hermetic sealing or ordering a special version.
These products are the heart of many industrial devices. They are utilized in electric drives and in filters catching metal filings. Additionally, due to their precise dimensions, they are indispensable in Hall effect sensors.
Standard neodymium magnets (grade N) work safely up to 80°C. Higher temperatures can cause irreversible demagnetization. If you need resistance to higher temperatures (e.g. 120°C, 150°C, 200°C), we offer H, SH, or UH series on request. Please note that magnets are sensitive to rapid temperature changes.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetism, neodymium magnets have these key benefits:

  • They do not lose their even during nearly ten years – the reduction of lifting capacity is only ~1% (according to tests),
  • Their ability to resist magnetic interference from external fields is impressive,
  • By applying a shiny layer of silver, the element gains a clean look,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping or adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Significant impact in cutting-edge sectors – they are utilized in hard drives, electromechanical systems, clinical machines or even high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment. For outdoor use, we recommend using waterproof magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Possible threat due to small fragments may arise, in case of ingestion, which is crucial in the health of young users. It should also be noted that miniature parts from these products have the potential to complicate medical imaging if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Breakaway strength of the magnet in ideal conditionswhat affects it?

The given holding capacity of the magnet corresponds to the highest holding force, assessed in ideal conditions, namely:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • in normal thermal conditions

Determinants of lifting force in real conditions

The lifting capacity of a magnet is influenced by in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance {between} the magnet and the plate reduces the holding force.

Handle Neodymium Magnets with Caution

  Neodymium magnets should not be around children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnetic are extremely fragile, leading to shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Safety precautions!

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98