e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. Practically all "magnets" in our store are available for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for searching F400 GOLD

Where to buy powerful neodymium magnet? Magnet holders in solid and airtight steel enclosure are ideally suited for use in difficult, demanding weather conditions, including during snow and rain more...

magnetic holders

Holders with magnets can be applied to facilitate production, underwater discoveries, or locating meteors made of metal read...

We promise to ship ordered magnets if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping in 3 days!

MW 20x5 / N38 - neodymium magnet

cylindrical magnet

catalog number 010044

GTIN: 5906301810438

5.0

diameter Ø

20 mm [±0,1 mm]

height

5 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

5.53 kg / 54.23 N

magnetic induction ~

277.16 mT / 2,772 Gs

max. temperature

≤ 80 °C

4.49 gross price (including VAT) / pcs +

3.65 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
3.65 ZŁ
4.49 ZŁ
price from 165 pcs
3.43 ZŁ
4.22 ZŁ
price from 603 pcs
3.21 ZŁ
3.95 ZŁ

Want to talk about magnets?

Give us a call tel: +48 888 99 98 98 or contact us through contact form on the contact page. You can check the mass and the appearance of neodymium magnets in our magnetic mass calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 20x5 / N38 ↑ axial

Characteristics: cylindrical magnet 20x5 / N38 ↑ axial
Properties
Values
catalog number
010044
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
20 mm [±0,1 mm]
height
5 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
5.53 kg / 54.23 N
magnetic induction ~ ?
277.16 mT / 2,772 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
11.78 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets i.e. MW 20x5 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which exceed ordinary ferrite magnets. Thanks to their strength, they are often employed in products that require powerful holding. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet named MW 20x5 / N38 and a magnetic force 5.53 kg has a weight of only 11.78 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of gold-nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the site for the latest information as well as promotions, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are very practical in many applications, they can also pose certain dangers. Because of their strong magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin and other surfaces, especially hands. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then forming and heat treating. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as nickel, to shield them from external factors and prolong their durability. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.

List recommended items

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Significant importance in modern technologies – are used in HDD drives, electric motors, medical devices and very modern machines.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk arising from small pieces of magnets can be dangerous, when accidentally ingested, which is particularly important in the context of children's health. Additionally, tiny parts of these devices are able to hinder the diagnostic process after entering the body.

Be Cautious with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are particularly delicate, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, are able even cut off a finger or there can be a significant pressure or even a fracture.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98