MW 20x5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010044
GTIN/EAN: 5906301810438
Diameter Ø
20 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
11.78 g
Magnetization Direction
↑ axial
Load capacity
6.93 kg / 67.95 N
Magnetic Induction
277.16 mT / 2772 Gs
Coating
[NiCuNi] Nickel
5.56 ZŁ with VAT / pcs + price for transport
4.52 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
or contact us via
our online form
the contact form page.
Parameters and shape of magnetic components can be checked using our
power calculator.
Same-day shipping for orders placed before 14:00.
Technical specification - MW 20x5 / N38 - cylindrical magnet
Specification / characteristics - MW 20x5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010044 |
| GTIN/EAN | 5906301810438 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 20 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 11.78 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 6.93 kg / 67.95 N |
| Magnetic Induction ~ ? | 277.16 mT / 2772 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the assembly - data
The following information are the direct effect of a physical calculation. Values were calculated on models for the material Nd2Fe14B. Actual performance may differ from theoretical values. Please consider these data as a preliminary roadmap for designers.
Table 1: Static force (force vs distance) - interaction chart
MW 20x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
strong |
| 1 mm |
2573 Gs
257.3 mT
|
5.97 kg / 13.17 lbs
5975.0 g / 58.6 N
|
strong |
| 2 mm |
2340 Gs
234.0 mT
|
4.94 kg / 10.89 lbs
4940.1 g / 48.5 N
|
strong |
| 3 mm |
2092 Gs
209.2 mT
|
3.95 kg / 8.70 lbs
3948.3 g / 38.7 N
|
strong |
| 5 mm |
1611 Gs
161.1 mT
|
2.34 kg / 5.17 lbs
2343.4 g / 23.0 N
|
strong |
| 10 mm |
775 Gs
77.5 mT
|
0.54 kg / 1.19 lbs
541.6 g / 5.3 N
|
weak grip |
| 15 mm |
387 Gs
38.7 mT
|
0.13 kg / 0.30 lbs
135.0 g / 1.3 N
|
weak grip |
| 20 mm |
211 Gs
21.1 mT
|
0.04 kg / 0.09 lbs
40.2 g / 0.4 N
|
weak grip |
| 30 mm |
80 Gs
8.0 mT
|
0.01 kg / 0.01 lbs
5.7 g / 0.1 N
|
weak grip |
| 50 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
weak grip |
Table 2: Shear capacity (wall)
MW 20x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.39 kg / 3.06 lbs
1386.0 g / 13.6 N
|
| 1 mm | Stal (~0.2) |
1.19 kg / 2.63 lbs
1194.0 g / 11.7 N
|
| 2 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 3 mm | Stal (~0.2) |
0.79 kg / 1.74 lbs
790.0 g / 7.7 N
|
| 5 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
468.0 g / 4.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MW 20x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
2.08 kg / 4.58 lbs
2079.0 g / 20.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.39 kg / 3.06 lbs
1386.0 g / 13.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.69 kg / 1.53 lbs
693.0 g / 6.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
3.47 kg / 7.64 lbs
3465.0 g / 34.0 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MW 20x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.69 kg / 1.53 lbs
693.0 g / 6.8 N
|
| 1 mm |
|
1.73 kg / 3.82 lbs
1732.5 g / 17.0 N
|
| 2 mm |
|
3.47 kg / 7.64 lbs
3465.0 g / 34.0 N
|
| 3 mm |
|
5.20 kg / 11.46 lbs
5197.5 g / 51.0 N
|
| 5 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
| 10 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
| 11 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
| 12 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
Table 5: Thermal resistance (stability) - thermal limit
MW 20x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
OK |
| 40 °C | -2.2% |
6.78 kg / 14.94 lbs
6777.5 g / 66.5 N
|
OK |
| 60 °C | -4.4% |
6.63 kg / 14.61 lbs
6625.1 g / 65.0 N
|
|
| 80 °C | -6.6% |
6.47 kg / 14.27 lbs
6472.6 g / 63.5 N
|
|
| 100 °C | -28.8% |
4.93 kg / 10.88 lbs
4934.2 g / 48.4 N
|
Table 6: Two magnets (repulsion) - forces in the system
MW 20x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
14.87 kg / 32.79 lbs
4 380 Gs
|
2.23 kg / 4.92 lbs
2231 g / 21.9 N
|
N/A |
| 1 mm |
13.89 kg / 30.63 lbs
5 357 Gs
|
2.08 kg / 4.59 lbs
2084 g / 20.4 N
|
12.50 kg / 27.57 lbs
~0 Gs
|
| 2 mm |
12.82 kg / 28.27 lbs
5 146 Gs
|
1.92 kg / 4.24 lbs
1923 g / 18.9 N
|
11.54 kg / 25.44 lbs
~0 Gs
|
| 3 mm |
11.71 kg / 25.82 lbs
4 918 Gs
|
1.76 kg / 3.87 lbs
1757 g / 17.2 N
|
10.54 kg / 23.24 lbs
~0 Gs
|
| 5 mm |
9.51 kg / 20.97 lbs
4 433 Gs
|
1.43 kg / 3.15 lbs
1427 g / 14.0 N
|
8.56 kg / 18.88 lbs
~0 Gs
|
| 10 mm |
5.03 kg / 11.09 lbs
3 223 Gs
|
0.75 kg / 1.66 lbs
754 g / 7.4 N
|
4.53 kg / 9.98 lbs
~0 Gs
|
| 20 mm |
1.16 kg / 2.56 lbs
1 549 Gs
|
0.17 kg / 0.38 lbs
174 g / 1.7 N
|
1.05 kg / 2.31 lbs
~0 Gs
|
| 50 mm |
0.03 kg / 0.07 lbs
251 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.03 lbs
159 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.01 lbs
107 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
75 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MW 20x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 8.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 6.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 5.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 4.0 cm |
| Car key | 50 Gs (5.0 mT) | 4.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Dynamics (kinetic energy) - warning
MW 20x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
25.63 km/h
(7.12 m/s)
|
0.30 J | |
| 30 mm |
42.39 km/h
(11.77 m/s)
|
0.82 J | |
| 50 mm |
54.70 km/h
(15.19 m/s)
|
1.36 J | |
| 100 mm |
77.35 km/h
(21.49 m/s)
|
2.72 J |
Table 9: Coating parameters (durability)
MW 20x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 20x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 9 675 Mx | 96.7 µWb |
| Pc Coefficient | 0.35 | Low (Flat) |
Table 11: Physics of underwater searching
MW 20x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 6.93 kg | Standard |
| Water (riverbed) |
7.93 kg
(+1.00 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Note: On a vertical surface, the magnet holds merely approx. 20-30% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. computer case) significantly limits the holding force.
3. Power loss vs temp
*For standard magnets, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.35
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also deals
Strengths and weaknesses of rare earth magnets.
Pros
- They retain attractive force for nearly 10 years – the loss is just ~1% (based on simulations),
- Magnets very well protect themselves against loss of magnetization caused by external fields,
- The use of an refined coating of noble metals (nickel, gold, silver) causes the element to present itself better,
- The surface of neodymium magnets generates a intense magnetic field – this is a distinguishing feature,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- Possibility of precise creating as well as adjusting to concrete requirements,
- Fundamental importance in electronics industry – they serve a role in hard drives, electric motors, diagnostic systems, also technologically advanced constructions.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in compact dimensions, which allows their use in miniature devices
Weaknesses
- At very strong impacts they can break, therefore we recommend placing them in steel cases. A metal housing provides additional protection against damage and increases the magnet's durability.
- Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of strength (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
- Magnets exposed to a humid environment can rust. Therefore during using outdoors, we advise using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Due to limitations in producing threads and complicated shapes in magnets, we recommend using casing - magnetic mechanism.
- Health risk to health – tiny shards of magnets can be dangerous, if swallowed, which gains importance in the context of child health protection. Additionally, tiny parts of these magnets can disrupt the diagnostic process medical when they are in the body.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which increases costs of application in large quantities
Holding force characteristics
Maximum magnetic pulling force – what affects it?
- using a sheet made of high-permeability steel, serving as a ideal flux conductor
- possessing a thickness of min. 10 mm to avoid saturation
- with an ideally smooth touching surface
- under conditions of no distance (metal-to-metal)
- for force acting at a right angle (pull-off, not shear)
- at temperature approx. 20 degrees Celsius
Impact of factors on magnetic holding capacity in practice
- Distance (betwixt the magnet and the metal), since even a tiny distance (e.g. 0.5 mm) can cause a drastic drop in force by up to 50% (this also applies to paint, rust or debris).
- Load vector – highest force is available only during pulling at a 90° angle. The force required to slide of the magnet along the surface is typically many times lower (approx. 1/5 of the lifting capacity).
- Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field penetrates through instead of converting into lifting capacity.
- Steel type – low-carbon steel gives the best results. Alloy admixtures decrease magnetic properties and lifting capacity.
- Surface finish – ideal contact is obtained only on smooth steel. Rough texture reduce the real contact area, weakening the magnet.
- Thermal conditions – NdFeB sinters have a negative temperature coefficient. When it is hot they lose power, and in frost gain strength (up to a certain limit).
Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the holding force is lower. In addition, even a minimal clearance between the magnet’s surface and the plate reduces the lifting capacity.
Precautions when working with neodymium magnets
Life threat
Warning for patients: Powerful magnets disrupt electronics. Maintain at least 30 cm distance or request help to work with the magnets.
Flammability
Powder generated during grinding of magnets is self-igniting. Do not drill into magnets without proper cooling and knowledge.
Power loss in heat
Monitor thermal conditions. Exposing the magnet to high heat will ruin its magnetic structure and pulling force.
Magnetic interference
Remember: rare earth magnets produce a field that confuses sensitive sensors. Maintain a safe distance from your mobile, tablet, and GPS.
Powerful field
Be careful. Rare earth magnets act from a long distance and snap with huge force, often quicker than you can react.
Safe distance
Avoid bringing magnets close to a purse, computer, or TV. The magnetic field can irreversibly ruin these devices and erase data from cards.
Warning for allergy sufferers
Some people experience a contact allergy to nickel, which is the common plating for neodymium magnets. Frequent touching can result in skin redness. We recommend use safety gloves.
Crushing risk
Watch your fingers. Two large magnets will snap together immediately with a force of several hundred kilograms, destroying everything in their path. Exercise extreme caution!
This is not a toy
Product intended for adults. Small elements can be swallowed, leading to severe trauma. Keep out of reach of children and animals.
Fragile material
Despite the nickel coating, the material is delicate and cannot withstand shocks. Do not hit, as the magnet may crumble into hazardous fragments.
