tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. All "neodymium magnets" in our store are in stock for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight and durable steel enclosure are perfect for use in difficult, demanding weather, including in the rain and snow see more...

magnets with holders

Magnetic holders can be used to improve manufacturing, underwater discoveries, or searching for meteors made of metal more...

Enjoy delivery of your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010044

GTIN: 5906301810438

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

5 mm

Weight

11.78 g

Magnetization Direction

↑ axial

Load capacity

5.53 kg / 54.23 N

Magnetic Induction

277.16 mT

Coating

[NiCuNi] nickel

4.33 with VAT / pcs + price for transport

3.52 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.52 ZŁ
4.33 ZŁ
price from 200 pcs
3.31 ZŁ
4.07 ZŁ
price from 750 pcs
3.06 ZŁ
3.76 ZŁ

Hunting for a discount?

Contact us by phone +48 888 99 98 98 otherwise get in touch through contact form the contact section.
Force along with appearance of a magnet can be analyzed using our force calculator.

Orders submitted before 14:00 will be dispatched today!

MW 20x5 / N38 - cylindrical magnet

Specification/characteristics MW 20x5 / N38 - cylindrical magnet
properties
values
Cat. no.
010044
GTIN
5906301810438
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
11.78 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5.53 kg / 54.23 N
Magnetic Induction ~ ?
277.16 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 20x5 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which outperform ordinary ferrite magnets. Because of their power, they are frequently employed in devices that require strong adhesion. The typical temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet with the designation MW 20x5 / N38 with a magnetic force 5.53 kg weighs only 11.78 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of silver to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the latest information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are useful in many applications, they can also constitute certain dangers. Because of their strong magnetic power, they can attract metallic objects with great force, which can lead to damaging skin and other surfaces, especially hands. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then shaping and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as nickel, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet N52 and N50 is a powerful and strong magnetic piece designed as a cylinder, that offers strong holding power and universal application. Competitive price, fast shipping, durability and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetism, neodymium magnets have these key benefits:

  • They retain their full power for almost ten years – the loss is just ~1% (based on simulations),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a polished nickel surface provides a eye-catching finish,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for accurate shaping or adaptation to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Key role in cutting-edge sectors – they are utilized in computer drives, electric motors, clinical machines as well as high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to external force, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall robustness,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is significant in the family environments. Furthermore, tiny components from these products can hinder health screening if inside the body,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what contributes to it?

The given strength of the magnet represents the optimal strength, determined in the best circumstances, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Determinants of practical lifting force of a magnet

In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

 Maintain neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Avoid bringing neodymium magnets close to a phone or GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets will bounce and also contact together within a radius of several to almost 10 cm from each other.

Neodymium magnetic are especially delicate, resulting in damage.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Be careful!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98