MW 10x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010004
GTIN/EAN: 5906301810032
Diameter Ø
10 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
5.89 g
Magnetization Direction
↑ axial
Load capacity
3.18 kg / 31.15 N
Magnetic Induction
553.84 mT / 5538 Gs
Coating
[NiCuNi] Nickel
4.31 ZŁ with VAT / pcs + price for transport
3.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
alternatively get in touch by means of
form
our website.
Strength along with shape of a magnet can be tested using our
modular calculator.
Same-day processing for orders placed before 14:00.
Technical - MW 10x10 / N38 - cylindrical magnet
Specification / characteristics - MW 10x10 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010004 |
| GTIN/EAN | 5906301810032 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 10 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 5.89 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 3.18 kg / 31.15 N |
| Magnetic Induction ~ ? | 553.84 mT / 5538 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the assembly - report
Presented values are the outcome of a physical analysis. Results rely on algorithms for the class Nd2Fe14B. Real-world performance may differ from theoretical values. Use these data as a supplementary guide during assembly planning.
Table 1: Static pull force (pull vs distance) - characteristics
MW 10x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg) | Risk Status |
|---|---|---|---|
| 0 mm |
5534 Gs
553.4 mT
|
3.18 kg / 3180.0 g
31.2 N
|
warning |
| 1 mm |
4428 Gs
442.8 mT
|
2.04 kg / 2036.1 g
20.0 N
|
warning |
| 2 mm |
3420 Gs
342.0 mT
|
1.21 kg / 1214.8 g
11.9 N
|
low risk |
| 3 mm |
2597 Gs
259.7 mT
|
0.70 kg / 700.2 g
6.9 N
|
low risk |
| 5 mm |
1498 Gs
149.8 mT
|
0.23 kg / 232.9 g
2.3 N
|
low risk |
| 10 mm |
469 Gs
46.9 mT
|
0.02 kg / 22.9 g
0.2 N
|
low risk |
| 15 mm |
198 Gs
19.8 mT
|
0.00 kg / 4.1 g
0.0 N
|
low risk |
| 20 mm |
101 Gs
10.1 mT
|
0.00 kg / 1.1 g
0.0 N
|
low risk |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.1 g
0.0 N
|
low risk |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
low risk |
Table 2: Sliding force (wall)
MW 10x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 636.0 g
6.2 N
|
| 1 mm | Stal (~0.2) |
0.41 kg / 408.0 g
4.0 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 242.0 g
2.4 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 140.0 g
1.4 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 46.0 g
0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MW 10x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.95 kg / 954.0 g
9.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 636.0 g
6.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 318.0 g
3.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.59 kg / 1590.0 g
15.6 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MW 10x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 318.0 g
3.1 N
|
| 1 mm |
|
0.80 kg / 795.0 g
7.8 N
|
| 2 mm |
|
1.59 kg / 1590.0 g
15.6 N
|
| 5 mm |
|
3.18 kg / 3180.0 g
31.2 N
|
| 10 mm |
|
3.18 kg / 3180.0 g
31.2 N
|
Table 5: Thermal resistance (stability) - power drop
MW 10x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.18 kg / 3180.0 g
31.2 N
|
OK |
| 40 °C | -2.2% |
3.11 kg / 3110.0 g
30.5 N
|
OK |
| 60 °C | -4.4% |
3.04 kg / 3040.1 g
29.8 N
|
OK |
| 80 °C | -6.6% |
2.97 kg / 2970.1 g
29.1 N
|
|
| 100 °C | -28.8% |
2.26 kg / 2264.2 g
22.2 N
|
Table 6: Two magnets (repulsion) - field collision
MW 10x10 / N38
| Gap (mm) | Attraction (kg) (N-S) | Repulsion (kg) (N-N) |
|---|---|---|
| 0 mm |
14.83 kg / 14830 g
145.5 N
6 003 Gs
|
N/A |
| 1 mm |
12.01 kg / 12012 g
117.8 N
9 962 Gs
|
10.81 kg / 10811 g
106.1 N
~0 Gs
|
| 2 mm |
9.50 kg / 9495 g
93.1 N
8 857 Gs
|
8.55 kg / 8546 g
83.8 N
~0 Gs
|
| 3 mm |
7.38 kg / 7381 g
72.4 N
7 809 Gs
|
6.64 kg / 6643 g
65.2 N
~0 Gs
|
| 5 mm |
4.31 kg / 4311 g
42.3 N
5 968 Gs
|
3.88 kg / 3880 g
38.1 N
~0 Gs
|
| 10 mm |
1.09 kg / 1086 g
10.7 N
2 996 Gs
|
0.98 kg / 978 g
9.6 N
~0 Gs
|
| 20 mm |
0.11 kg / 107 g
1.0 N
939 Gs
|
0.10 kg / 96 g
0.9 N
~0 Gs
|
| 50 mm |
0.00 kg / 2 g
0.0 N
116 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Table 7: Protective zones (electronics) - warnings
MW 10x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 6.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 4.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.0 cm |
| Remote | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (kinetic energy) - warning
MW 10x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
23.54 km/h
(6.54 m/s)
|
0.13 J | |
| 30 mm |
40.59 km/h
(11.27 m/s)
|
0.37 J | |
| 50 mm |
52.40 km/h
(14.56 m/s)
|
0.62 J | |
| 100 mm |
74.10 km/h
(20.58 m/s)
|
1.25 J |
Table 9: Surface protection spec
MW 10x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 10x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 4 481 Mx | 44.8 µWb |
| Pc Coefficient | 0.89 | High (Stable) |
Table 11: Submerged application
MW 10x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 3.18 kg | Standard |
| Water (riverbed) |
3.64 kg
(+0.46 kg Buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical surface, the magnet retains only ~20% of its perpendicular strength.
2. Plate thickness effect
*Thin steel (e.g. computer case) severely weakens the holding force.
3. Heat tolerance
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.89
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also proposals
Pros and cons of neodymium magnets.
Advantages
- They virtually do not lose power, because even after 10 years the performance loss is only ~1% (according to literature),
- They show high resistance to demagnetization induced by external disturbances,
- By covering with a shiny layer of nickel, the element gains an nice look,
- They are known for high magnetic induction at the operating surface, which affects their effectiveness,
- Through (appropriate) combination of ingredients, they can achieve high thermal resistance, allowing for operation at temperatures approaching 230°C and above...
- Thanks to freedom in designing and the ability to modify to unusual requirements,
- Key role in future technologies – they are used in HDD drives, drive modules, medical equipment, as well as technologically advanced constructions.
- Thanks to efficiency per cm³, small magnets offer high operating force, in miniature format,
Disadvantages
- Brittleness is one of their disadvantages. Upon intense impact they can break. We advise keeping them in a steel housing, which not only secures them against impacts but also increases their durability
- Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material stable to moisture, when using outdoors
- Due to limitations in creating threads and complex shapes in magnets, we propose using a housing - magnetic mount.
- Possible danger resulting from small fragments of magnets pose a threat, when accidentally swallowed, which becomes key in the context of child health protection. Furthermore, tiny parts of these devices can be problematic in diagnostics medical when they are in the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Highest magnetic holding force – what it depends on?
- using a base made of low-carbon steel, acting as a magnetic yoke
- possessing a thickness of min. 10 mm to ensure full flux closure
- with an ideally smooth touching surface
- without the slightest clearance between the magnet and steel
- for force acting at a right angle (pull-off, not shear)
- at conditions approx. 20°C
Impact of factors on magnetic holding capacity in practice
- Clearance – the presence of any layer (paint, tape, gap) interrupts the magnetic circuit, which lowers power rapidly (even by 50% at 0.5 mm).
- Force direction – declared lifting capacity refers to detachment vertically. When applying parallel force, the magnet exhibits significantly lower power (often approx. 20-30% of nominal force).
- Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of generating force.
- Steel grade – the best choice is high-permeability steel. Cast iron may have worse magnetic properties.
- Plate texture – ground elements guarantee perfect abutment, which increases field saturation. Rough surfaces reduce efficiency.
- Temperature influence – high temperature reduces pulling force. Too high temperature can permanently demagnetize the magnet.
Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under parallel forces the lifting capacity is smaller. In addition, even a slight gap between the magnet and the plate reduces the lifting capacity.
H&S for magnets
Metal Allergy
Allergy Notice: The nickel-copper-nickel coating consists of nickel. If an allergic reaction occurs, immediately stop working with magnets and use protective gear.
Fire risk
Machining of NdFeB material carries a risk of fire hazard. Neodymium dust oxidizes rapidly with oxygen and is difficult to extinguish.
Demagnetization risk
Control the heat. Heating the magnet to high heat will destroy its properties and pulling force.
Magnet fragility
Watch out for shards. Magnets can fracture upon violent connection, launching shards into the air. Wear goggles.
Serious injuries
Mind your fingers. Two large magnets will join instantly with a force of massive weight, crushing everything in their path. Exercise extreme caution!
Medical implants
Warning for patients: Strong magnetic fields affect medical devices. Keep at least 30 cm distance or ask another person to handle the magnets.
Protect data
Avoid bringing magnets near a purse, laptop, or screen. The magnetism can irreversibly ruin these devices and wipe information from cards.
Product not for children
Only for adults. Tiny parts can be swallowed, causing intestinal necrosis. Store away from children and animals.
Conscious usage
Be careful. Rare earth magnets attract from a distance and snap with huge force, often faster than you can react.
Phone sensors
Remember: neodymium magnets generate a field that interferes with sensitive sensors. Maintain a separation from your phone, device, and navigation systems.
