Neodymiums – wide shape selection

Looking for huge power in small size? We have in stock complete range of disc, cylindrical and ring magnets. Perfect for for home use, garage and model making. Browse assortment in stock.

discover price list and dimensions

Equipment for treasure hunters

Discover your passion with treasure salvaging! Our specialized grips (F200, F400) provide safety guarantee and huge lifting capacity. Stainless steel construction and reinforced ropes are reliable in any water.

choose your set

Industrial magnetic grips mounting

Proven solutions for fixing without drilling. Threaded mounts (external or internal) provide quick improvement of work on warehouses. Perfect for installing lighting, sensors and ads.

check industrial applications

🚚 Order by 14:00 – we'll ship today!

Dhit sp. z o.o.
Product available Ships tomorrow

MW 10x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010004

GTIN/EAN: 5906301810032

5.00

Diameter Ø

10 mm [±0,1 mm]

Height

10 mm [±0,1 mm]

Weight

5.89 g

Magnetization Direction

↑ axial

Load capacity

3.18 kg / 31.15 N

Magnetic Induction

553.84 mT / 5538 Gs

Coating

[NiCuNi] Nickel

4.31 with VAT / pcs + price for transport

3.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.50 ZŁ
4.31 ZŁ
price from 200 pcs
3.29 ZŁ
4.05 ZŁ
price from 750 pcs
3.08 ZŁ
3.79 ZŁ
Hunting for a discount?

Pick up the phone and ask +48 22 499 98 98 alternatively let us know using contact form the contact form page.
Weight as well as appearance of magnets can be analyzed using our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

Technical of the product - MW 10x10 / N38 - cylindrical magnet

Specification / characteristics - MW 10x10 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010004
GTIN/EAN 5906301810032
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 10 mm [±0,1 mm]
Height 10 mm [±0,1 mm]
Weight 5.89 g
Magnetization Direction ↑ axial
Load capacity ~ ? 3.18 kg / 31.15 N
Magnetic Induction ~ ? 553.84 mT / 5538 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 10x10 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical simulation of the product - report

These values are the result of a engineering analysis. Values were calculated on algorithms for the material Nd2Fe14B. Real-world performance might slightly differ. Please consider these calculations as a reference point during assembly planning.

Table 1: Static pull force (pull vs distance) - power drop
MW 10x10 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 5534 Gs
553.4 mT
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
strong
1 mm 4428 Gs
442.8 mT
2.04 kg / 4.49 lbs
2036.1 g / 20.0 N
strong
2 mm 3420 Gs
342.0 mT
1.21 kg / 2.68 lbs
1214.8 g / 11.9 N
safe
3 mm 2597 Gs
259.7 mT
0.70 kg / 1.54 lbs
700.2 g / 6.9 N
safe
5 mm 1498 Gs
149.8 mT
0.23 kg / 0.51 lbs
232.9 g / 2.3 N
safe
10 mm 469 Gs
46.9 mT
0.02 kg / 0.05 lbs
22.9 g / 0.2 N
safe
15 mm 198 Gs
19.8 mT
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
safe
20 mm 101 Gs
10.1 mT
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
safe
30 mm 36 Gs
3.6 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
safe
50 mm 9 Gs
0.9 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Slippage capacity (wall)
MW 10x10 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.64 kg / 1.40 lbs
636.0 g / 6.2 N
1 mm Stal (~0.2) 0.41 kg / 0.90 lbs
408.0 g / 4.0 N
2 mm Stal (~0.2) 0.24 kg / 0.53 lbs
242.0 g / 2.4 N
3 mm Stal (~0.2) 0.14 kg / 0.31 lbs
140.0 g / 1.4 N
5 mm Stal (~0.2) 0.05 kg / 0.10 lbs
46.0 g / 0.5 N
10 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 10x10 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.95 kg / 2.10 lbs
954.0 g / 9.4 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.64 kg / 1.40 lbs
636.0 g / 6.2 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
1.59 kg / 3.51 lbs
1590.0 g / 15.6 N

Table 4: Steel thickness (substrate influence) - sheet metal selection
MW 10x10 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
1 mm
25%
0.80 kg / 1.75 lbs
795.0 g / 7.8 N
2 mm
50%
1.59 kg / 3.51 lbs
1590.0 g / 15.6 N
3 mm
75%
2.39 kg / 5.26 lbs
2385.0 g / 23.4 N
5 mm
100%
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
10 mm
100%
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
11 mm
100%
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
12 mm
100%
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N

Table 5: Thermal resistance (stability) - power drop
MW 10x10 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
OK
40 °C -2.2% 3.11 kg / 6.86 lbs
3110.0 g / 30.5 N
OK
60 °C -4.4% 3.04 kg / 6.70 lbs
3040.1 g / 29.8 N
OK
80 °C -6.6% 2.97 kg / 6.55 lbs
2970.1 g / 29.1 N
100 °C -28.8% 2.26 kg / 4.99 lbs
2264.2 g / 22.2 N

Table 6: Two magnets (repulsion) - forces in the system
MW 10x10 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 14.83 kg / 32.69 lbs
6 003 Gs
2.22 kg / 4.90 lbs
2224 g / 21.8 N
N/A
1 mm 12.01 kg / 26.48 lbs
9 962 Gs
1.80 kg / 3.97 lbs
1802 g / 17.7 N
10.81 kg / 23.83 lbs
~0 Gs
2 mm 9.50 kg / 20.93 lbs
8 857 Gs
1.42 kg / 3.14 lbs
1424 g / 14.0 N
8.55 kg / 18.84 lbs
~0 Gs
3 mm 7.38 kg / 16.27 lbs
7 809 Gs
1.11 kg / 2.44 lbs
1107 g / 10.9 N
6.64 kg / 14.64 lbs
~0 Gs
5 mm 4.31 kg / 9.50 lbs
5 968 Gs
0.65 kg / 1.43 lbs
647 g / 6.3 N
3.88 kg / 8.55 lbs
~0 Gs
10 mm 1.09 kg / 2.39 lbs
2 996 Gs
0.16 kg / 0.36 lbs
163 g / 1.6 N
0.98 kg / 2.16 lbs
~0 Gs
20 mm 0.11 kg / 0.24 lbs
939 Gs
0.02 kg / 0.04 lbs
16 g / 0.2 N
0.10 kg / 0.21 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
116 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
73 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
49 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
34 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
25 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
19 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Safety (HSE) (electronics) - precautionary measures
MW 10x10 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 6.5 cm
Hearing aid 10 Gs (1.0 mT) 5.0 cm
Timepiece 20 Gs (2.0 mT) 4.0 cm
Phone / Smartphone 40 Gs (4.0 mT) 3.0 cm
Remote 50 Gs (5.0 mT) 3.0 cm
Payment card 400 Gs (40.0 mT) 1.5 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Collisions (kinetic energy) - warning
MW 10x10 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 23.54 km/h
(6.54 m/s)
0.13 J
30 mm 40.59 km/h
(11.27 m/s)
0.37 J
50 mm 52.40 km/h
(14.56 m/s)
0.62 J
100 mm 74.10 km/h
(20.58 m/s)
1.25 J

Table 9: Surface protection spec
MW 10x10 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MW 10x10 / N38

Parameter Value SI Unit / Description
Magnetic Flux 4 481 Mx 44.8 µWb
Pc Coefficient 0.89 High (Stable)

Table 11: Submerged application
MW 10x10 / N38

Environment Effective steel pull Effect
Air (land) 3.18 kg Standard
Water (riverbed) 3.64 kg
(+0.46 kg buoyancy gain)
+14.5%
Corrosion warning: Remember to wipe the magnet thoroughly after removing it from water and apply a protective layer (e.g., oil) to avoid corrosion.
1. Wall mount (shear)

*Warning: On a vertical wall, the magnet retains merely approx. 20-30% of its max power.

2. Steel saturation

*Thin steel (e.g. computer case) severely weakens the holding force.

3. Temperature resistance

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.89

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Elemental analysis
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010004-2026
Quick Unit Converter
Pulling force

Magnetic Field

Other deals

The presented product is an incredibly powerful cylindrical magnet, produced from modern NdFeB material, which, at dimensions of Ø10x10 mm, guarantees maximum efficiency. This specific item boasts an accuracy of ±0.1mm and industrial build quality, making it a perfect solution for the most demanding engineers and designers. As a cylindrical magnet with impressive force (approx. 3.18 kg), this product is available off-the-shelf from our warehouse in Poland, ensuring rapid order fulfillment. Moreover, its triple-layer Ni-Cu-Ni coating secures it against corrosion in standard operating conditions, guaranteeing an aesthetic appearance and durability for years.
This model is ideal for building generators, advanced sensors, and efficient filters, where maximum induction on a small surface counts. Thanks to the pull force of 31.15 N with a weight of only 5.89 g, this cylindrical magnet is indispensable in electronics and wherever every gram matters.
Since our magnets have a very precise dimensions, the best method is to glue them into holes with a slightly larger diameter (e.g., 10.1 mm) using two-component epoxy glues. To ensure stability in industry, anaerobic resins are used, which are safe for nickel and fill the gap, guaranteeing durability of the connection.
Magnets NdFeB grade N38 are suitable for the majority of applications in modeling and machine building, where excessive miniaturization with maximum force is not required. If you need even stronger magnets in the same volume (Ø10x10), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard available off-the-shelf in our warehouse.
The presented product is a neodymium magnet with precisely defined parameters: diameter 10 mm and height 10 mm. The key parameter here is the holding force amounting to approximately 3.18 kg (force ~31.15 N), which, with such compact dimensions, proves the high grade of the NdFeB material. The product has a [NiCuNi] coating, which secures it against oxidation, giving it an aesthetic, silvery shine.
This cylinder is magnetized axially (along the height of 10 mm), which means that the N and S poles are located on the flat, circular surfaces. Such an arrangement is standard when connecting magnets in stacks (e.g., in filters) or when mounting in sockets at the bottom of a hole. On request, we can also produce versions magnetized diametrically if your project requires it.

Pros and cons of rare earth magnets.

Benefits

Besides their immense pulling force, neodymium magnets offer the following advantages:
  • They have unchanged lifting capacity, and over more than ten years their attraction force decreases symbolically – ~1% (in testing),
  • Neodymium magnets are distinguished by exceptionally resistant to magnetic field loss caused by magnetic disturbances,
  • Thanks to the elegant finish, the surface of nickel, gold, or silver-plated gives an modern appearance,
  • Magnetic induction on the top side of the magnet remains strong,
  • Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
  • In view of the possibility of free shaping and customization to unique solutions, neodymium magnets can be modeled in a broad palette of shapes and sizes, which increases their versatility,
  • Fundamental importance in innovative solutions – they are utilized in hard drives, brushless drives, medical devices, as well as multitasking production systems.
  • Compactness – despite small sizes they provide effective action, making them ideal for precision applications

Cons

Characteristics of disadvantages of neodymium magnets: weaknesses and usage proposals
  • Susceptibility to cracking is one of their disadvantages. Upon strong impact they can break. We recommend keeping them in a strong case, which not only secures them against impacts but also raises their durability
  • When exposed to high temperature, neodymium magnets suffer a drop in power. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
  • They rust in a humid environment - during use outdoors we advise using waterproof magnets e.g. in rubber, plastic
  • Due to limitations in realizing nuts and complex forms in magnets, we propose using cover - magnetic holder.
  • Possible danger to health – tiny shards of magnets are risky, in case of ingestion, which gains importance in the context of child health protection. It is also worth noting that small elements of these devices are able to complicate diagnosis medical after entering the body.
  • Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications

Holding force characteristics

Best holding force of the magnet in ideal parameterswhat it depends on?

Breakaway force was defined for the most favorable conditions, including:
  • with the application of a yoke made of special test steel, guaranteeing maximum field concentration
  • possessing a thickness of min. 10 mm to avoid saturation
  • with a surface cleaned and smooth
  • with total lack of distance (without coatings)
  • under perpendicular force vector (90-degree angle)
  • in neutral thermal conditions

Practical aspects of lifting capacity – factors

Holding efficiency is affected by specific conditions, mainly (from most important):
  • Clearance – existence of any layer (rust, tape, gap) interrupts the magnetic circuit, which reduces capacity steeply (even by 50% at 0.5 mm).
  • Load vector – maximum parameter is obtained only during pulling at a 90° angle. The shear force of the magnet along the surface is typically many times smaller (approx. 1/5 of the lifting capacity).
  • Wall thickness – thin material does not allow full use of the magnet. Part of the magnetic field passes through the material instead of converting into lifting capacity.
  • Chemical composition of the base – low-carbon steel gives the best results. Alloy admixtures decrease magnetic properties and holding force.
  • Base smoothness – the more even the surface, the better the adhesion and stronger the hold. Unevenness creates an air distance.
  • Temperature – heating the magnet causes a temporary drop of force. It is worth remembering the thermal limit for a given model.

Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a minimal clearance between the magnet and the plate decreases the load capacity.

H&S for magnets
Thermal limits

Regular neodymium magnets (grade N) undergo demagnetization when the temperature surpasses 80°C. The loss of strength is permanent.

Do not underestimate power

Handle with care. Rare earth magnets attract from a distance and snap with massive power, often quicker than you can react.

Pinching danger

Protect your hands. Two powerful magnets will join immediately with a force of massive weight, destroying everything in their path. Exercise extreme caution!

Allergy Warning

Allergy Notice: The nickel-copper-nickel coating consists of nickel. If skin irritation happens, immediately stop working with magnets and wear gloves.

Flammability

Drilling and cutting of NdFeB material poses a fire hazard. Neodymium dust reacts violently with oxygen and is hard to extinguish.

GPS Danger

A powerful magnetic field disrupts the operation of compasses in phones and GPS navigation. Do not bring magnets close to a device to prevent damaging the sensors.

Adults only

Only for adults. Small elements pose a choking risk, causing serious injuries. Store out of reach of children and animals.

Keep away from computers

Avoid bringing magnets close to a purse, laptop, or screen. The magnetic field can destroy these devices and wipe information from cards.

Danger to pacemakers

Health Alert: Neodymium magnets can deactivate pacemakers and defibrillators. Do not approach if you have medical devices.

Fragile material

Neodymium magnets are sintered ceramics, which means they are very brittle. Impact of two magnets leads to them shattering into shards.

Important! Want to know more? Check our post: Are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98