MW 10x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010004
GTIN/EAN: 5906301810032
Diameter Ø
10 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
5.89 g
Magnetization Direction
↑ axial
Load capacity
3.18 kg / 31.15 N
Magnetic Induction
553.84 mT / 5538 Gs
Coating
[NiCuNi] Nickel
4.31 ZŁ with VAT / pcs + price for transport
3.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
if you prefer send us a note through
our online form
the contact page.
Specifications as well as appearance of magnetic components can be checked with our
magnetic mass calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical - MW 10x10 / N38 - cylindrical magnet
Specification / characteristics - MW 10x10 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010004 |
| GTIN/EAN | 5906301810032 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 10 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 5.89 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 3.18 kg / 31.15 N |
| Magnetic Induction ~ ? | 553.84 mT / 5538 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the magnet - technical parameters
The following values represent the direct effect of a mathematical simulation. Results were calculated on algorithms for the class Nd2Fe14B. Actual performance may differ. Use these calculations as a preliminary roadmap during assembly planning.
Table 1: Static pull force (pull vs distance) - characteristics
MW 10x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5534 Gs
553.4 mT
|
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
strong |
| 1 mm |
4428 Gs
442.8 mT
|
2.04 kg / 4.49 lbs
2036.1 g / 20.0 N
|
strong |
| 2 mm |
3420 Gs
342.0 mT
|
1.21 kg / 2.68 lbs
1214.8 g / 11.9 N
|
weak grip |
| 3 mm |
2597 Gs
259.7 mT
|
0.70 kg / 1.54 lbs
700.2 g / 6.9 N
|
weak grip |
| 5 mm |
1498 Gs
149.8 mT
|
0.23 kg / 0.51 lbs
232.9 g / 2.3 N
|
weak grip |
| 10 mm |
469 Gs
46.9 mT
|
0.02 kg / 0.05 lbs
22.9 g / 0.2 N
|
weak grip |
| 15 mm |
198 Gs
19.8 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
weak grip |
| 20 mm |
101 Gs
10.1 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
weak grip |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
weak grip |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Slippage capacity (vertical surface)
MW 10x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 1.40 lbs
636.0 g / 6.2 N
|
| 1 mm | Stal (~0.2) |
0.41 kg / 0.90 lbs
408.0 g / 4.0 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 0.53 lbs
242.0 g / 2.4 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MW 10x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.95 kg / 2.10 lbs
954.0 g / 9.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 1.40 lbs
636.0 g / 6.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.59 kg / 3.51 lbs
1590.0 g / 15.6 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MW 10x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
|
| 1 mm |
|
0.80 kg / 1.75 lbs
795.0 g / 7.8 N
|
| 2 mm |
|
1.59 kg / 3.51 lbs
1590.0 g / 15.6 N
|
| 3 mm |
|
2.39 kg / 5.26 lbs
2385.0 g / 23.4 N
|
| 5 mm |
|
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
| 10 mm |
|
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
| 11 mm |
|
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
| 12 mm |
|
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
Table 5: Thermal resistance (stability) - thermal limit
MW 10x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
|
OK |
| 40 °C | -2.2% |
3.11 kg / 6.86 lbs
3110.0 g / 30.5 N
|
OK |
| 60 °C | -4.4% |
3.04 kg / 6.70 lbs
3040.1 g / 29.8 N
|
OK |
| 80 °C | -6.6% |
2.97 kg / 6.55 lbs
2970.1 g / 29.1 N
|
|
| 100 °C | -28.8% |
2.26 kg / 4.99 lbs
2264.2 g / 22.2 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MW 10x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
14.83 kg / 32.69 lbs
6 003 Gs
|
2.22 kg / 4.90 lbs
2224 g / 21.8 N
|
N/A |
| 1 mm |
12.01 kg / 26.48 lbs
9 962 Gs
|
1.80 kg / 3.97 lbs
1802 g / 17.7 N
|
10.81 kg / 23.83 lbs
~0 Gs
|
| 2 mm |
9.50 kg / 20.93 lbs
8 857 Gs
|
1.42 kg / 3.14 lbs
1424 g / 14.0 N
|
8.55 kg / 18.84 lbs
~0 Gs
|
| 3 mm |
7.38 kg / 16.27 lbs
7 809 Gs
|
1.11 kg / 2.44 lbs
1107 g / 10.9 N
|
6.64 kg / 14.64 lbs
~0 Gs
|
| 5 mm |
4.31 kg / 9.50 lbs
5 968 Gs
|
0.65 kg / 1.43 lbs
647 g / 6.3 N
|
3.88 kg / 8.55 lbs
~0 Gs
|
| 10 mm |
1.09 kg / 2.39 lbs
2 996 Gs
|
0.16 kg / 0.36 lbs
163 g / 1.6 N
|
0.98 kg / 2.16 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.24 lbs
939 Gs
|
0.02 kg / 0.04 lbs
16 g / 0.2 N
|
0.10 kg / 0.21 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
116 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
73 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
49 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (implants) - precautionary measures
MW 10x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 6.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 4.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.0 cm |
| Remote | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (kinetic energy) - warning
MW 10x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
23.54 km/h
(6.54 m/s)
|
0.13 J | |
| 30 mm |
40.59 km/h
(11.27 m/s)
|
0.37 J | |
| 50 mm |
52.40 km/h
(14.56 m/s)
|
0.62 J | |
| 100 mm |
74.10 km/h
(20.58 m/s)
|
1.25 J |
Table 9: Corrosion resistance
MW 10x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 10x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 4 481 Mx | 44.8 µWb |
| Pc Coefficient | 0.89 | High (Stable) |
Table 11: Submerged application
MW 10x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 3.18 kg | Standard |
| Water (riverbed) |
3.64 kg
(+0.46 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Caution: On a vertical surface, the magnet retains only approx. 20-30% of its max power.
2. Steel saturation
*Thin metal sheet (e.g. computer case) drastically reduces the holding force.
3. Heat tolerance
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.89
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Strengths and weaknesses of rare earth magnets.
Benefits
- They retain full power for nearly 10 years – the drop is just ~1% (according to analyses),
- They do not lose their magnetic properties even under strong external field,
- In other words, due to the glossy finish of silver, the element gains a professional look,
- Neodymium magnets deliver maximum magnetic induction on a small area, which increases force concentration,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Possibility of detailed forming and adapting to complex requirements,
- Huge importance in innovative solutions – they serve a role in data components, drive modules, precision medical tools, also multitasking production systems.
- Thanks to concentrated force, small magnets offer high operating force, with minimal size,
Cons
- To avoid cracks under impact, we suggest using special steel holders. Such a solution protects the magnet and simultaneously improves its durability.
- When exposed to high temperature, neodymium magnets suffer a drop in power. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets usually rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which prevent oxidation and corrosion.
- Due to limitations in realizing nuts and complicated forms in magnets, we propose using a housing - magnetic holder.
- Potential hazard resulting from small fragments of magnets are risky, in case of ingestion, which gains importance in the context of child safety. Furthermore, tiny parts of these products can be problematic in diagnostics medical after entering the body.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which can limit application in large quantities
Holding force characteristics
Highest magnetic holding force – what affects it?
- with the application of a sheet made of special test steel, ensuring full magnetic saturation
- whose transverse dimension is min. 10 mm
- with an ground contact surface
- without the slightest clearance between the magnet and steel
- during detachment in a direction vertical to the mounting surface
- in neutral thermal conditions
Magnet lifting force in use – key factors
- Air gap (between the magnet and the plate), since even a tiny distance (e.g. 0.5 mm) leads to a drastic drop in lifting capacity by up to 50% (this also applies to varnish, corrosion or debris).
- Load vector – maximum parameter is obtained only during perpendicular pulling. The force required to slide of the magnet along the plate is typically many times lower (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Magnetic flux passes through the material instead of generating force.
- Material type – ideal substrate is high-permeability steel. Hardened steels may attract less.
- Surface quality – the smoother and more polished the surface, the larger the contact zone and higher the lifting capacity. Unevenness creates an air distance.
- Temperature – heating the magnet causes a temporary drop of force. Check the thermal limit for a given model.
Lifting capacity was assessed by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under shearing force the holding force is lower. In addition, even a slight gap between the magnet and the plate decreases the lifting capacity.
Safety rules for work with neodymium magnets
Protect data
Equipment safety: Neodymium magnets can ruin payment cards and delicate electronics (pacemakers, hearing aids, timepieces).
Life threat
Medical warning: Strong magnets can deactivate heart devices and defibrillators. Stay away if you have medical devices.
Dust is flammable
Combustion risk: Neodymium dust is highly flammable. Do not process magnets without safety gear as this may cause fire.
Finger safety
Big blocks can crush fingers in a fraction of a second. Do not place your hand between two strong magnets.
Skin irritation risks
It is widely known that nickel (standard magnet coating) is a common allergen. If you have an allergy, avoid touching magnets with bare hands or opt for versions in plastic housing.
Material brittleness
Despite the nickel coating, neodymium is brittle and not impact-resistant. Avoid impacts, as the magnet may crumble into hazardous fragments.
Impact on smartphones
Be aware: neodymium magnets generate a field that interferes with precision electronics. Maintain a separation from your mobile, tablet, and GPS.
Conscious usage
Exercise caution. Neodymium magnets act from a distance and connect with massive power, often faster than you can react.
Swallowing risk
Neodymium magnets are not toys. Accidental ingestion of multiple magnets may result in them attracting across intestines, which constitutes a critical condition and requires immediate surgery.
Heat sensitivity
Watch the temperature. Exposing the magnet to high heat will permanently weaken its properties and pulling force.
