MW 10x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010004
GTIN/EAN: 5906301810032
Diameter Ø
10 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
5.89 g
Magnetization Direction
↑ axial
Load capacity
3.18 kg / 31.15 N
Magnetic Induction
553.84 mT / 5538 Gs
Coating
[NiCuNi] Nickel
4.31 ZŁ with VAT / pcs + price for transport
3.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
if you prefer contact us using
contact form
through our site.
Weight as well as appearance of a neodymium magnet can be analyzed using our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
Technical of the product - MW 10x10 / N38 - cylindrical magnet
Specification / characteristics - MW 10x10 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010004 |
| GTIN/EAN | 5906301810032 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 10 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 5.89 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 3.18 kg / 31.15 N |
| Magnetic Induction ~ ? | 553.84 mT / 5538 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the magnet - report
The following values represent the outcome of a physical analysis. Results were calculated on algorithms for the material Nd2Fe14B. Actual conditions might slightly deviate from the simulation results. Treat these calculations as a preliminary roadmap when designing systems.
Table 1: Static force (force vs gap) - characteristics
MW 10x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg) | Risk Status |
|---|---|---|---|
| 0 mm |
5534 Gs
553.4 mT
|
3.18 kg / 3180.0 g
31.2 N
|
medium risk |
| 1 mm |
4428 Gs
442.8 mT
|
2.04 kg / 2036.1 g
20.0 N
|
medium risk |
| 2 mm |
3420 Gs
342.0 mT
|
1.21 kg / 1214.8 g
11.9 N
|
weak grip |
| 3 mm |
2597 Gs
259.7 mT
|
0.70 kg / 700.2 g
6.9 N
|
weak grip |
| 5 mm |
1498 Gs
149.8 mT
|
0.23 kg / 232.9 g
2.3 N
|
weak grip |
| 10 mm |
469 Gs
46.9 mT
|
0.02 kg / 22.9 g
0.2 N
|
weak grip |
| 15 mm |
198 Gs
19.8 mT
|
0.00 kg / 4.1 g
0.0 N
|
weak grip |
| 20 mm |
101 Gs
10.1 mT
|
0.00 kg / 1.1 g
0.0 N
|
weak grip |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.1 g
0.0 N
|
weak grip |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
weak grip |
Table 2: Shear capacity (vertical surface)
MW 10x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 636.0 g
6.2 N
|
| 1 mm | Stal (~0.2) |
0.41 kg / 408.0 g
4.0 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 242.0 g
2.4 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 140.0 g
1.4 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 46.0 g
0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 10x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.95 kg / 954.0 g
9.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 636.0 g
6.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 318.0 g
3.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.59 kg / 1590.0 g
15.6 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MW 10x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 318.0 g
3.1 N
|
| 1 mm |
|
0.80 kg / 795.0 g
7.8 N
|
| 2 mm |
|
1.59 kg / 1590.0 g
15.6 N
|
| 5 mm |
|
3.18 kg / 3180.0 g
31.2 N
|
| 10 mm |
|
3.18 kg / 3180.0 g
31.2 N
|
Table 5: Working in heat (stability) - resistance threshold
MW 10x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.18 kg / 3180.0 g
31.2 N
|
OK |
| 40 °C | -2.2% |
3.11 kg / 3110.0 g
30.5 N
|
OK |
| 60 °C | -4.4% |
3.04 kg / 3040.1 g
29.8 N
|
OK |
| 80 °C | -6.6% |
2.97 kg / 2970.1 g
29.1 N
|
|
| 100 °C | -28.8% |
2.26 kg / 2264.2 g
22.2 N
|
Table 6: Magnet-Magnet interaction (attraction) - forces in the system
MW 10x10 / N38
| Gap (mm) | Attraction (kg) (N-S) | Repulsion (kg) (N-N) |
|---|---|---|
| 0 mm |
14.83 kg / 14830 g
145.5 N
6 003 Gs
|
N/A |
| 1 mm |
12.01 kg / 12012 g
117.8 N
9 962 Gs
|
10.81 kg / 10811 g
106.1 N
~0 Gs
|
| 2 mm |
9.50 kg / 9495 g
93.1 N
8 857 Gs
|
8.55 kg / 8546 g
83.8 N
~0 Gs
|
| 3 mm |
7.38 kg / 7381 g
72.4 N
7 809 Gs
|
6.64 kg / 6643 g
65.2 N
~0 Gs
|
| 5 mm |
4.31 kg / 4311 g
42.3 N
5 968 Gs
|
3.88 kg / 3880 g
38.1 N
~0 Gs
|
| 10 mm |
1.09 kg / 1086 g
10.7 N
2 996 Gs
|
0.98 kg / 978 g
9.6 N
~0 Gs
|
| 20 mm |
0.11 kg / 107 g
1.0 N
939 Gs
|
0.10 kg / 96 g
0.9 N
~0 Gs
|
| 50 mm |
0.00 kg / 2 g
0.0 N
116 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MW 10x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 6.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 4.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.0 cm |
| Car key | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (kinetic energy) - warning
MW 10x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
23.54 km/h
(6.54 m/s)
|
0.13 J | |
| 30 mm |
40.59 km/h
(11.27 m/s)
|
0.37 J | |
| 50 mm |
52.40 km/h
(14.56 m/s)
|
0.62 J | |
| 100 mm |
74.10 km/h
(20.58 m/s)
|
1.25 J |
Table 9: Anti-corrosion coating durability
MW 10x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 10x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 4 481 Mx | 44.8 µWb |
| Pc Coefficient | 0.89 | High (Stable) |
Table 11: Submerged application
MW 10x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 3.18 kg | Standard |
| Water (riverbed) |
3.64 kg
(+0.46 kg Buoyancy gain)
|
+14.5% |
1. Vertical hold
*Caution: On a vertical wall, the magnet holds merely ~20% of its nominal pull.
2. Efficiency vs thickness
*Thin steel (e.g. 0.5mm PC case) significantly limits the holding force.
3. Thermal stability
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.89
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out also products
Advantages and disadvantages of Nd2Fe14B magnets.
Pros
- They retain attractive force for nearly ten years – the drop is just ~1% (based on simulations),
- They are extremely resistant to demagnetization induced by presence of other magnetic fields,
- The use of an refined finish of noble metals (nickel, gold, silver) causes the element to present itself better,
- Magnetic induction on the surface of the magnet turns out to be extremely intense,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and are able to act (depending on the form) even at a temperature of 230°C or more...
- Due to the possibility of flexible forming and customization to individualized requirements, neodymium magnets can be manufactured in a broad palette of forms and dimensions, which amplifies use scope,
- Universal use in innovative solutions – they serve a role in computer drives, drive modules, medical equipment, as well as modern systems.
- Relatively small size with high pulling force – neodymium magnets offer high power in small dimensions, which makes them useful in small systems
Weaknesses
- To avoid cracks under impact, we suggest using special steel holders. Such a solution protects the magnet and simultaneously improves its durability.
- When exposed to high temperature, neodymium magnets suffer a drop in strength. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation and corrosion.
- Due to limitations in realizing threads and complicated shapes in magnets, we recommend using cover - magnetic mechanism.
- Possible danger resulting from small fragments of magnets pose a threat, if swallowed, which is particularly important in the context of child safety. Additionally, small components of these devices can complicate diagnosis medical after entering the body.
- Due to neodymium price, their price is relatively high,
Lifting parameters
Best holding force of the magnet in ideal parameters – what it depends on?
- with the use of a yoke made of low-carbon steel, ensuring full magnetic saturation
- whose transverse dimension reaches at least 10 mm
- with an polished touching surface
- with zero gap (without paint)
- during pulling in a direction vertical to the mounting surface
- at room temperature
Practical aspects of lifting capacity – factors
- Distance (betwixt the magnet and the plate), because even a microscopic distance (e.g. 0.5 mm) results in a drastic drop in lifting capacity by up to 50% (this also applies to varnish, corrosion or dirt).
- Force direction – remember that the magnet has greatest strength perpendicularly. Under shear forces, the capacity drops significantly, often to levels of 20-30% of the nominal value.
- Element thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet restricts the attraction force (the magnet "punches through" it).
- Steel grade – ideal substrate is high-permeability steel. Stainless steels may generate lower lifting capacity.
- Surface quality – the more even the plate, the better the adhesion and stronger the hold. Roughness acts like micro-gaps.
- Thermal factor – high temperature reduces magnetic field. Exceeding the limit temperature can permanently damage the magnet.
Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under parallel forces the lifting capacity is smaller. In addition, even a small distance between the magnet’s surface and the plate decreases the lifting capacity.
Warnings
Pacemakers
Warning for patients: Strong magnetic fields disrupt electronics. Keep at least 30 cm distance or ask another person to handle the magnets.
Threat to navigation
An intense magnetic field interferes with the operation of compasses in phones and navigation systems. Keep magnets near a smartphone to avoid breaking the sensors.
Avoid contact if allergic
A percentage of the population have a hypersensitivity to nickel, which is the common plating for NdFeB magnets. Extended handling can result in a rash. We strongly advise use safety gloves.
Thermal limits
Do not overheat. Neodymium magnets are susceptible to heat. If you need resistance above 80°C, inquire about HT versions (H, SH, UH).
Conscious usage
Before starting, read the rules. Sudden snapping can destroy the magnet or injure your hand. Be predictive.
Bodily injuries
Protect your hands. Two large magnets will snap together immediately with a force of several hundred kilograms, destroying anything in their path. Be careful!
Dust is flammable
Drilling and cutting of neodymium magnets carries a risk of fire hazard. Neodymium dust reacts violently with oxygen and is difficult to extinguish.
Material brittleness
Beware of splinters. Magnets can explode upon uncontrolled impact, ejecting sharp fragments into the air. Eye protection is mandatory.
Magnetic media
Avoid bringing magnets near a wallet, computer, or TV. The magnetism can irreversibly ruin these devices and erase data from cards.
Product not for children
Product intended for adults. Small elements can be swallowed, leading to intestinal necrosis. Keep away from children and animals.
