e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. Practically all "magnets" in our store are in stock for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for fishing F200 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight and durable steel enclosure are excellent for use in difficult, demanding climate conditions, including during snow and rain check...

magnetic holders

Magnetic holders can be used to improve manufacturing, exploring underwater areas, or finding meteorites made of metal see more...

Shipping is always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships in 3 days

MW 10x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010004

GTIN: 5906301810032

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

10 mm

Weight

5.89 g

Magnetization Direction

↑ axial

Load capacity

5.53 kg / 54.23 N

Magnetic Induction

553.84 mT

Coating

[NiCuNi] nickel

4.31 with VAT / pcs + price for transport

3.50 ZŁ net + 23% VAT / pcs

2.57 ZŁ net was the lowest price in the last 30 days

bulk discounts:

Need more?

price from 1 pcs
3.50 ZŁ
4.31 ZŁ
price from 200 pcs
3.29 ZŁ
4.05 ZŁ
price from 750 pcs
3.08 ZŁ
3.79 ZŁ

Not sure about your choice?

Call us +48 22 499 98 98 if you prefer contact us through our online form the contact form page.
Parameters along with structure of neodymium magnets can be checked with our magnetic mass calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 10x10 / N38 - cylindrical magnet

Specification/characteristics MW 10x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010004
GTIN
5906301810032
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
5.89 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5.53 kg / 54.23 N
Magnetic Induction ~ ?
553.84 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

These rod-shaped products are made of sintered Neodymium-Iron-Boron (NdFeB). This ensures huge pull force while maintaining a small size. Model MW 10x10 / N38 has a pull force of approx. 5.53 kg. Their symmetrical shape makes them excellent for mounting in drilled holes, electric motors and magnetic separators. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
The best and safest method is gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). We recommend two-component (epoxy) glues, which are safe for the anti-corrosion layer. Avoid press-fitting with force, as neodymium is a brittle material and can easily crack upon impact.
The grade symbol (e.g. N38, N52) defines the magnetic energy density of the material. A higher value means more power for the same size. The universal option is N38, which provides good performance at a reasonable price. For demanding applications, we recommend grade N52, which is the most powerful option on the market.
These products have a standard coating of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects in indoor conditions. This is not a hermetic barrier. With constant contact with water or rain, the coating may be damaged, leading to rusting of the magnet. For such tasks, we recommend hermetic sealing or ordering a special version.
Cylindrical magnets are a key component of many modern machines. They are used in generators and wind turbines and in magnetic separators for cleaning bulk products. Additionally, due to their precise dimensions, they are indispensable in Hall effect sensors.
These magnets retain their properties up to 80 degrees Celsius. Exceeding this limit risks permanent loss of power. For more demanding conditions (e.g. 120°C, 150°C, 200°C), ask about high-temperature versions (H, SH, UH). Please note that magnets are sensitive to rapid temperature changes.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous field intensity, neodymium magnets offer the following advantages:

  • They have constant strength, and over nearly ten years their attraction force decreases symbolically – ~1% (in testing),
  • They show strong resistance to demagnetization from external magnetic fields,
  • The use of a mirror-like gold surface provides a eye-catching finish,
  • They have very high magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Important function in new technology industries – they are used in computer drives, electric motors, diagnostic apparatus along with technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall resistance,
  • They lose power at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard due to small fragments may arise, in case of ingestion, which is significant in the context of child safety. Furthermore, miniature parts from these products can interfere with diagnostics when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what affects it?

The given holding capacity of the magnet means the highest holding force, measured under optimal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • with no separation
  • in a perpendicular direction of force
  • under standard ambient temperature

Key elements affecting lifting force

In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.

Notes with Neodymium Magnets

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

 It is important to keep neodymium magnets away from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are extremely fragile, they easily break and can become damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

If you have a finger between or on the path of attracting magnets, there may be a severe cut or even a fracture.

Be careful!

In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98