MW 10x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010004
GTIN: 5906301810032
Diameter Ø [±0,1 mm]
10 mm
Height [±0,1 mm]
10 mm
Weight
5.89 g
Magnetization Direction
↑ axial
Load capacity
5.53 kg / 54.23 N
Magnetic Induction
553.84 mT
Coating
[NiCuNi] nickel
4.31 ZŁ with VAT / pcs + price for transport
3.50 ZŁ net + 23% VAT / pcs
2.57 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Not sure about your choice?
Call us
+48 22 499 98 98
if you prefer contact us through
our online form
the contact form page.
Parameters along with structure of neodymium magnets can be checked with our
magnetic mass calculator.
Orders placed before 14:00 will be shipped the same business day.
MW 10x10 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their tremendous field intensity, neodymium magnets offer the following advantages:
- They have constant strength, and over nearly ten years their attraction force decreases symbolically – ~1% (in testing),
- They show strong resistance to demagnetization from external magnetic fields,
- The use of a mirror-like gold surface provides a eye-catching finish,
- They have very high magnetic induction on the surface of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Important function in new technology industries – they are used in computer drives, electric motors, diagnostic apparatus along with technologically developed systems,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall resistance,
- They lose power at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
- Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
- Potential hazard due to small fragments may arise, in case of ingestion, which is significant in the context of child safety. Furthermore, miniature parts from these products can interfere with diagnostics when ingested,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Magnetic strength at its maximum – what affects it?
The given holding capacity of the magnet means the highest holding force, measured under optimal conditions, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- in a perpendicular direction of force
- under standard ambient temperature
Key elements affecting lifting force
In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.
Notes with Neodymium Magnets
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
It is important to keep neodymium magnets away from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnetic are extremely fragile, they easily break and can become damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
If you have a finger between or on the path of attracting magnets, there may be a severe cut or even a fracture.
Be careful!
In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.
