MW 3x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010065
GTIN: 5906301810643
Diameter Ø [±0,1 mm]
3 mm
Height [±0,1 mm]
6 mm
Weight
0.32 g
Magnetization Direction
↑ axial
Load capacity
1 kg / 9.81 N
Magnetic Induction
598.96 mT
Coating
[NiCuNi] nickel
0.295 ZŁ with VAT / pcs + price for transport
0.240 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Pick up the phone and ask
+48 22 499 98 98
or drop us a message through
request form
the contact form page.
Lifting power and shape of magnets can be estimated on our
power calculator.
Order by 14:00 and we’ll ship today!
MW 3x6 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent magnetism, neodymium magnets have these key benefits:
- They do not lose their even during nearly 10 years – the loss of power is only ~1% (based on measurements),
- They protect against demagnetization induced by surrounding magnetic influence effectively,
- Because of the brilliant layer of gold, the component looks high-end,
- The outer field strength of the magnet shows advanced magnetic properties,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which broadens their functional possibilities,
- Wide application in cutting-edge sectors – they are utilized in data storage devices, rotating machines, medical equipment and technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in compact constructions
Disadvantages of rare earth magnets:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to physical collisions, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage while also reinforces its overall resistance,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to humidity can rust. Therefore, for outdoor applications, we advise waterproof types made of rubber,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
- Safety concern linked to microscopic shards may arise, when consumed by mistake, which is important in the protection of children. Furthermore, small elements from these products might disrupt scanning once in the system,
- Due to expensive raw materials, their cost is above average,
Maximum lifting capacity of the magnet – what it depends on?
The given pulling force of the magnet represents the maximum force, calculated in the best circumstances, that is:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a polished side
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
Practical aspects of lifting capacity – factors
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured using a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the load capacity.
Handle with Care: Neodymium Magnets
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets are fragile and can easily crack as well as get damaged.
Neodymium magnetic are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
It is essential to maintain neodymium magnets away from children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.
Neodymium magnets bounce and touch each other mutually within a distance of several to around 10 cm from each other.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Never bring neodymium magnets close to a phone and GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Caution!
To show why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.
