e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to buy powerful magnet? Magnet holders in solid and airtight enclosure are ideally suited for use in challenging weather conditions, including during snow and rain read...

magnetic holders

Magnetic holders can be used to facilitate manufacturing, underwater discoveries, or locating meteors made of ore more...

We promise to ship ordered magnets if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 3x6 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010065

GTIN: 5906301810643

5

Diameter Ø [±0,1 mm]

3 mm

Height [±0,1 mm]

6 mm

Weight

0.32 g

Magnetization Direction

↑ axial

Load capacity

1 kg / 9.81 N

Magnetic Induction

598.96 mT

Coating

[NiCuNi] nickel

0.30 with VAT / pcs + price for transport

0.24 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.24 ZŁ
0.30 ZŁ
price from 2500 pcs
0.23 ZŁ
0.28 ZŁ
price from 10500 pcs
0.21 ZŁ
0.26 ZŁ

Want to talk magnets?

Pick up the phone and ask +48 22 499 98 98 otherwise let us know using form the contact section.
Force and structure of a neodymium magnet can be reviewed with our magnetic mass calculator.

Orders submitted before 14:00 will be dispatched today!

MW 3x6 / N38 - cylindrical magnet

Specification/characteristics MW 3x6 / N38 - cylindrical magnet
properties
values
Cat. no.
010065
GTIN
5906301810643
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
3 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
0.32 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1 kg / 9.81 N
Magnetic Induction ~ ?
598.96 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets i.e. MW 3x6 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which exceed ordinary ferrite magnets. Because of their strength, they are frequently used in products that require powerful holding. The typical temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet named MW 3x6 / N38 with a magnetic lifting capacity of 1 kg has a weight of only 0.32 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the site for the current information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are useful in many applications, they can also constitute certain risk. Because of their significant magnetic power, they can attract metallic objects with uncontrolled force, which can lead to crushing skin as well as other surfaces, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then forming and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as gold, to shield them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet N52 and N50 is a powerful and highly strong magnetic piece shaped like a cylinder, featuring strong holding power and broad usability. Very good price, 24h delivery, resistance and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their magnetic field remains stable, and after around 10 years, it drops only by ~1% (theoretically),
  • They protect against demagnetization induced by ambient magnetic influence remarkably well,
  • Thanks to the shiny finish and silver coating, they have an elegant appearance,
  • They have exceptional magnetic induction on the surface of the magnet,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for accurate shaping or adaptation to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
  • Wide application in new technology industries – they serve a purpose in computer drives, electromechanical systems, diagnostic apparatus and high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and additionally increases its overall resistance,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
  • Possible threat due to small fragments may arise, in case of ingestion, which is important in the family environments. Moreover, miniature parts from these products might interfere with diagnostics if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Best holding force of the magnet in ideal parameterswhat affects it?

The given pulling force of the magnet corresponds to the maximum force, assessed in a perfect environment, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Determinants of practical lifting force of a magnet

Practical lifting force is dependent on elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the load capacity is reduced by as much as 5 times. Moreover, even a small distance {between} the magnet and the plate decreases the holding force.

Handle Neodymium Magnets with Caution

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnetic are highly fragile, they easily break as well as can become damaged.

Magnets made of neodymium are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will crack or alternatively crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely firmly.

 Maintain neodymium magnets far from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Warning!

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98