MW 3x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010065
GTIN/EAN: 5906301810643
Diameter Ø
3 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
0.32 g
Magnetization Direction
↑ axial
Load capacity
0.20 kg / 1.95 N
Magnetic Induction
598.96 mT / 5990 Gs
Coating
[NiCuNi] Nickel
0.295 ZŁ with VAT / pcs + price for transport
0.240 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 888 99 98 98
alternatively drop us a message through
contact form
through our site.
Weight and shape of magnetic components can be calculated on our
power calculator.
Order by 14:00 and we’ll ship today!
Technical details - MW 3x6 / N38 - cylindrical magnet
Specification / characteristics - MW 3x6 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010065 |
| GTIN/EAN | 5906301810643 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 3 mm [±0,1 mm] |
| Height | 6 mm [±0,1 mm] |
| Weight | 0.32 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.20 kg / 1.95 N |
| Magnetic Induction ~ ? | 598.96 mT / 5990 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the assembly - data
The following data constitute the outcome of a physical analysis. Results are based on algorithms for the class Nd2Fe14B. Operational parameters might slightly differ. Please consider these data as a reference point when designing systems.
Table 1: Static pull force (force vs gap) - characteristics
MW 3x6 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5974 Gs
597.4 mT
|
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
weak grip |
| 1 mm |
2623 Gs
262.3 mT
|
0.04 kg / 0.09 lbs
38.6 g / 0.4 N
|
weak grip |
| 2 mm |
1134 Gs
113.4 mT
|
0.01 kg / 0.02 lbs
7.2 g / 0.1 N
|
weak grip |
| 3 mm |
570 Gs
57.0 mT
|
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
|
weak grip |
| 5 mm |
205 Gs
20.5 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
weak grip |
| 10 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 15 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 20 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Vertical load (wall)
MW 3x6 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 3x6 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
Table 4: Steel thickness (substrate influence) - power losses
MW 3x6 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 1 mm |
|
0.05 kg / 0.11 lbs
50.0 g / 0.5 N
|
| 2 mm |
|
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 3 mm |
|
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 5 mm |
|
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 10 mm |
|
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 11 mm |
|
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 12 mm |
|
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
Table 5: Thermal resistance (stability) - power drop
MW 3x6 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
OK |
| 40 °C | -2.2% |
0.20 kg / 0.43 lbs
195.6 g / 1.9 N
|
OK |
| 60 °C | -4.4% |
0.19 kg / 0.42 lbs
191.2 g / 1.9 N
|
OK |
| 80 °C | -6.6% |
0.19 kg / 0.41 lbs
186.8 g / 1.8 N
|
|
| 100 °C | -28.8% |
0.14 kg / 0.31 lbs
142.4 g / 1.4 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MW 3x6 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.56 kg / 3.43 lbs
6 111 Gs
|
0.23 kg / 0.51 lbs
233 g / 2.3 N
|
N/A |
| 1 mm |
0.73 kg / 1.60 lbs
8 161 Gs
|
0.11 kg / 0.24 lbs
109 g / 1.1 N
|
0.65 kg / 1.44 lbs
~0 Gs
|
| 2 mm |
0.30 kg / 0.66 lbs
5 246 Gs
|
0.04 kg / 0.10 lbs
45 g / 0.4 N
|
0.27 kg / 0.60 lbs
~0 Gs
|
| 3 mm |
0.13 kg / 0.28 lbs
3 391 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.11 kg / 0.25 lbs
~0 Gs
|
| 5 mm |
0.03 kg / 0.06 lbs
1 578 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 lbs
409 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
83 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MW 3x6 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 1.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MW 3x6 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
25.21 km/h
(7.00 m/s)
|
0.01 J | |
| 30 mm |
43.67 km/h
(12.13 m/s)
|
0.02 J | |
| 50 mm |
56.38 km/h
(15.66 m/s)
|
0.04 J | |
| 100 mm |
79.73 km/h
(22.15 m/s)
|
0.08 J |
Table 9: Surface protection spec
MW 3x6 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 3x6 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 470 Mx | 4.7 µWb |
| Pc Coefficient | 1.21 | High (Stable) |
Table 11: Submerged application
MW 3x6 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.20 kg | Standard |
| Water (riverbed) |
0.23 kg
(+0.03 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Caution: On a vertical wall, the magnet retains only approx. 20-30% of its nominal pull.
2. Steel thickness impact
*Thin metal sheet (e.g. 0.5mm PC case) drastically reduces the holding force.
3. Power loss vs temp
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.21
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also deals
Strengths as well as weaknesses of rare earth magnets.
Advantages
- They virtually do not lose strength, because even after 10 years the decline in efficiency is only ~1% (based on calculations),
- They feature excellent resistance to magnetism drop due to external fields,
- The use of an shiny finish of noble metals (nickel, gold, silver) causes the element to present itself better,
- Magnets have huge magnetic induction on the surface,
- Thanks to resistance to high temperature, they can operate (depending on the shape) even at temperatures up to 230°C and higher...
- Thanks to modularity in constructing and the capacity to customize to specific needs,
- Versatile presence in high-tech industry – they are utilized in hard drives, brushless drives, precision medical tools, also multitasking production systems.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Cons
- At very strong impacts they can crack, therefore we recommend placing them in steel cases. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- When exposed to high temperature, neodymium magnets experience a drop in force. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Magnets exposed to a humid environment can rust. Therefore while using outdoors, we suggest using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Limited ability of making threads in the magnet and complex forms - recommended is cover - magnet mounting.
- Health risk to health – tiny shards of magnets pose a threat, in case of ingestion, which is particularly important in the context of child safety. Furthermore, small components of these devices can complicate diagnosis medical in case of swallowing.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which hinders application in large quantities
Pull force analysis
Magnetic strength at its maximum – what contributes to it?
- on a plate made of structural steel, perfectly concentrating the magnetic field
- with a cross-section of at least 10 mm
- with an polished touching surface
- under conditions of no distance (surface-to-surface)
- during pulling in a direction perpendicular to the mounting surface
- at temperature room level
Magnet lifting force in use – key factors
- Distance – existence of any layer (rust, dirt, gap) acts as an insulator, which reduces power rapidly (even by 50% at 0.5 mm).
- Force direction – remember that the magnet holds strongest perpendicularly. Under sliding down, the holding force drops significantly, often to levels of 20-30% of the nominal value.
- Metal thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field penetrates through instead of converting into lifting capacity.
- Material type – ideal substrate is pure iron steel. Stainless steels may have worse magnetic properties.
- Plate texture – ground elements ensure maximum contact, which improves field saturation. Uneven metal weaken the grip.
- Thermal conditions – NdFeB sinters have a negative temperature coefficient. At higher temperatures they are weaker, and in frost gain strength (up to a certain limit).
Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under shearing force the lifting capacity is smaller. In addition, even a slight gap between the magnet’s surface and the plate decreases the lifting capacity.
Safe handling of NdFeB magnets
GPS Danger
Remember: neodymium magnets generate a field that interferes with sensitive sensors. Keep a safe distance from your phone, tablet, and navigation systems.
Immense force
Handle magnets consciously. Their powerful strength can surprise even professionals. Stay alert and respect their force.
Sensitization to coating
Warning for allergy sufferers: The nickel-copper-nickel coating consists of nickel. If skin irritation appears, immediately stop handling magnets and wear gloves.
Medical implants
Patients with a pacemaker have to keep an absolute distance from magnets. The magnetism can disrupt the operation of the implant.
Safe distance
Do not bring magnets close to a purse, computer, or screen. The magnetism can destroy these devices and erase data from cards.
Crushing force
Pinching hazard: The pulling power is so immense that it can result in hematomas, pinching, and broken bones. Protective gloves are recommended.
Mechanical processing
Machining of NdFeB material poses a fire hazard. Neodymium dust reacts violently with oxygen and is hard to extinguish.
Permanent damage
Avoid heat. NdFeB magnets are susceptible to heat. If you need operation above 80°C, inquire about HT versions (H, SH, UH).
Beware of splinters
Despite the nickel coating, neodymium is brittle and not impact-resistant. Do not hit, as the magnet may shatter into hazardous fragments.
No play value
Absolutely store magnets out of reach of children. Choking hazard is significant, and the effects of magnets connecting inside the body are fatal.
