e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. All magnesy on our website are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in airtight, solid steel enclosure are excellent for use in difficult, demanding weather conditions, including in the rain and snow more information...

magnetic holders

Holders with magnets can be used to enhance production, exploring underwater areas, or finding meteors made of ore see...

Order is always shipped if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

SM 18x200 [2xM5] / N42 - magnetic roller

magnetic separator

catalog number 130273

GTIN: 5906301812753

no reviews

diameter Ø

18 mm [±0,1 mm]

height

200 mm [±0,1 mm]

max. temperature

≤ 80 °C

442.80 PLN gross price (including VAT) / pcs +

360.00 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
360.00 PLN
442.80 PLN
price from 7 pcs
342.00 PLN
420.66 PLN
price from 13 pcs
324.00 PLN
398.52 PLN

Do you have a dilemma in choosing?

Give us a call tel: +48 22 499 98 98 or write via form on our website. You can check the mass and the appearance of neodymium magnets in our magnetic mass calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 18x200 [2xM5] / N42

Characteristics: magnetic separator 18x200 [2xM5] / N42
Properties
Values
catalog number
130273
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
18 mm [±0,1 mm]
height
200 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
0.01 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N42
ilość gwintów
2x [M5] wewnętrzne
biegunowość
obwodowa - 9 nabiegunników
indukcja magnetyczna
~ 5 400 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N42

material characteristics N42
Properties
Values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
40-42
BH max MGOe
energy density [Min. - Max.]
318-334
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The device rod magnetic is based on the use of neodymium magnets, which are embedded in a construction made of stainless steel usually AISI304. In this way, it is possible to precisely separate ferromagnetic elements from the mixture. A fundamental component of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are used in food production to remove metallic contaminants, including iron fragments or iron dust. Our rollers are built from durable acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, often called magnetic separators, are used in metal separation, food production as well as waste processing. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet anchored in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Usually it is believed that the stronger the magnet, the more efficient it is. However, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be more compressed. On the other hand, in the case of a thicker magnet, the force lines will be extended and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, usually stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, type AISI 316 steel is highly recommended due to its outstanding corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other devices that often use complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, it is suggested {to clean them regularly from deposits, avoid extreme temperatures up to 80°C, and to clean them regularly, avoiding temperatures up to 80°C. The rollers have an IP67 waterproof rating, so if they are not sealed, the magnets inside may oxidize and lose their strength. Magnetic field measurements are advised to be conducted once every 24 months. Caution should be exercised during use as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it can be worn down, which, in turn, can result in issues with the magnetic rod becoming unsealed and product contamination. The effective operating range of the roller equals its diameter, fi25mm is approximately 25mm active range, while fi32 is about 40mm.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the shape) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in many variants of shapes and sizes, which amplifies their universality in usage.
  • Wide application in modern technologies – are utilized in computer drives, electric drive mechanisms, medical devices or other advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets are risky, if swallowed, which is particularly important in the context of child safety. Additionally, miniscule components of these devices have the potential to be problematic in medical diagnosis when they are in the body.

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, are able even cut off a finger or there can be a severe pressure or even a fracture.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnetic are particularly fragile, which leads to shattering.

Neodymium magnets are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98