e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. All magnesy in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in airtight, solid enclosure are excellent for use in difficult weather, including snow and rain read...

magnetic holders

Holders with magnets can be applied to enhance production processes, underwater exploration, or finding space rocks made of ore more information...

Enjoy shipping of your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

SM 18x200 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130273

GTIN: 5906301812753

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

200 mm

Weight

0.01 g

442.80 with VAT / pcs + price for transport

360.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
360.00 ZŁ
442.80 ZŁ
price from 10 pcs
342.00 ZŁ
420.66 ZŁ
price from 15 pcs
324.00 ZŁ
398.52 ZŁ

Do you have doubts?

Give us a call +48 888 99 98 98 otherwise drop us a message by means of form the contact form page.
Force along with structure of neodymium magnets can be calculated with our magnetic calculator.

Same-day shipping for orders placed before 14:00.

SM 18x200 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x200 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130273
GTIN
5906301812753
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic rod is the basic building block of grate separators. It is used for cleaning bulk products (flour, sugar, granules) and liquids (oils, juices). High magnetic induction allows catching the finest iron particles.
The rod consists of a casing tube made of acid-resistant steel (AISI 304/316). The core is a magnetic circuit generating high induction. Thanks to this, the rod is durable and hygienic.
Metal filings stick very firmly to the surface, so cleaning requires strength or a trick. You can use compressed air or special non-magnetic strippers. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
Magnetic induction measured in Gauss (Gs) determines the magnetic flux density on the rod surface. The economical version handles large metal pieces well. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
We fulfill custom orders for bars matched to your machine. We offer various tip options: threaded holes (e.g., M8, M10), protruding screws, flat studs, or handles. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They have stable power, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • They remain magnetized despite exposure to magnetic noise,
  • By applying a bright layer of silver, the element gains a modern look,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which expands their functional possibilities,
  • Important function in cutting-edge sectors – they are utilized in HDDs, rotating machines, clinical machines or even high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time enhances its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a damp environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is notable in the protection of children. Furthermore, tiny components from these devices have the potential to hinder health screening after being swallowed,
  • Due to a complex production process, their cost is relatively high,

Magnetic strength at its maximum – what affects it?

The given holding capacity of the magnet corresponds to the highest holding force, determined under optimal conditions, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Practical lifting capacity: influencing factors

The lifting capacity of a magnet is determined by in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under parallel forces the lifting capacity is smaller. Moreover, even a small distance {between} the magnet and the plate lowers the load capacity.

Precautions

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Magnets made of neodymium are especially delicate, which leads to their breakage.

Magnets made of neodymium are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

 It is essential to maintain neodymium magnets out of reach from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a significant pressure or a fracture.

Keep neodymium magnets away from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Warning!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98