SM 18x200 [2xM5] / N42 - magnetic separator
magnetic separator
Catalog no 130273
GTIN: 5906301812753
Diameter Ø [±0,1 mm]
18 mm
Height [±0,1 mm]
200 mm
Weight
0.01 g
442.80 ZŁ with VAT / pcs + price for transport
360.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have a hard time selecting?
Contact us by phone
+48 22 499 98 98
alternatively drop us a message using
form
the contact section.
Lifting power along with appearance of a neodymium magnet can be tested with our
magnetic mass calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 18x200 [2xM5] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They have unchanged lifting capacity, and over more than ten years their performance decreases symbolically – ~1% (in testing),
- They show exceptional resistance to demagnetization from outside magnetic sources,
- In other words, due to the shiny nickel coating, the magnet obtains an aesthetic appearance,
- They possess intense magnetic force measurable at the magnet’s surface,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
- The ability for accurate shaping and adaptation to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Important function in cutting-edge sectors – they are utilized in HDDs, electric motors, healthcare devices or even sophisticated instruments,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and reinforces its overall durability,
- They lose field intensity at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing threads directly in the magnet,
- Health risk related to magnet particles may arise, in case of ingestion, which is significant in the family environments. Moreover, miniature parts from these magnets can interfere with diagnostics after being swallowed,
- In cases of mass production, neodymium magnet cost may be a barrier,
Detachment force of the magnet in optimal conditions – what contributes to it?
The given pulling force of the magnet corresponds to the maximum force, determined in the best circumstances, specifically:
- with mild steel, used as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Practical lifting capacity: influencing factors
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the load capacity is reduced by as much as 5 times. Moreover, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.
Precautions
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Magnets made of neodymium are noted for being fragile, which can cause them to become damaged.
Neodymium magnets are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Do not give neodymium magnets to children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.
Be careful!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
