e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are in stock for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnet for fishing F300 GOLD

Where to buy powerful magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in difficult, demanding weather, including during snow and rain read...

magnetic holders

Magnetic holders can be applied to improve production, exploring underwater areas, or locating meteorites made of ore read...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x200 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130273

GTIN: 5906301812753

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

200 mm

Weight

0.01 g

442.80 with VAT / pcs + price for transport

360.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
360.00 ZŁ
442.80 ZŁ
price from 10 pcs
342.00 ZŁ
420.66 ZŁ
price from 15 pcs
324.00 ZŁ
398.52 ZŁ

Want to talk magnets?

Give us a call +48 888 99 98 98 or contact us using request form through our site.
Specifications as well as shape of magnets can be reviewed on our power calculator.

Order by 14:00 and we’ll ship today!

SM 18x200 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x200 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130273
GTIN
5906301812753
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. In this way, it is possible to precisely remove ferromagnetic elements from the mixture. A key aspect of its operation is the use of repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be collected. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food sector to remove metallic contaminants, such as iron fragments or iron dust. Our rods are made from durable acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, are used in food production, metal separation as well as recycling. They help in eliminating iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets placed in a tube made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the stronger the magnet, the more effective. But, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be more compressed. By contrast, when the magnet is thick, the force lines will be extended and reach further.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, AISI 316 steel is highly recommended thanks to its outstanding corrosion resistance.
Magnetic bars stand out for their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth washing regularly, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and weaken. Testing of the rollers is recommended be carried out every two years. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (according to literature),
  • They show exceptional resistance to demagnetization from external magnetic fields,
  • In other words, due to the shiny nickel coating, the magnet obtains an aesthetic appearance,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
  • Important function in advanced technical fields – they find application in hard drives, electromechanical systems, medical equipment as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of magnetic elements:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to physical collisions, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time enhances its overall resistance,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing holes directly in the magnet,
  • Health risk related to magnet particles may arise, if ingested accidentally, which is notable in the health of young users. Furthermore, small elements from these devices may complicate medical imaging when ingested,
  • Due to the price of neodymium, their cost is relatively high,

Best holding force of the magnet in ideal parameterswhat it depends on?

The given strength of the magnet corresponds to the optimal strength, measured in the best circumstances, that is:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate decreases the load capacity.

Notes with Neodymium Magnets

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnetic are extremely fragile, leading to their cracking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If the joining of neodymium magnets is not controlled, then they may crumble and crack. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Caution!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98