tel: +48 22 499 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. Practically all magnesy on our website are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight and durable steel casing are ideally suited for use in difficult weather conditions, including in the rain and snow see more...

magnets with holders

Magnetic holders can be applied to enhance production, underwater exploration, or searching for space rocks made of metal see more...

Enjoy shipping of your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x200 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130273

GTIN: 5906301812753

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

200 mm

Weight

0.01 g

442.80 with VAT / pcs + price for transport

360.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
360.00 ZŁ
442.80 ZŁ
price from 10 pcs
342.00 ZŁ
420.66 ZŁ
price from 15 pcs
324.00 ZŁ
398.52 ZŁ

Can't decide what to choose?

Contact us by phone +48 22 499 98 98 if you prefer contact us through request form the contact form page.
Specifications and appearance of magnets can be calculated on our force calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 18x200 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x200 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130273
GTIN
5906301812753
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are placed in a casing made of stainless steel mostly AISI304. As a result, it is possible to precisely segregate ferromagnetic elements from the mixture. An important element of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the embedded magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in the food industry to clear metallic contaminants, for example iron fragments or iron dust. Our rods are made from durable acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, often called cylindrical magnets, find application in metal separation, food production as well as waste processing. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets embedded in a tube made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the more efficient it is. However, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines are more compressed. By contrast, in the case of a thicker magnet, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a saltwater contact, AISI 316 steel is recommended due to its excellent corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from contaminants, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and lose their power. Magnetic field measurements is recommended be carried out every two years. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (according to literature),
  • They show superior resistance to demagnetization from outside magnetic sources,
  • The use of a mirror-like nickel surface provides a eye-catching finish,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Wide application in modern technologies – they find application in computer drives, electric drives, diagnostic apparatus and sophisticated instruments,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of NdFeB magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to moisture can corrode. Therefore, for outdoor applications, we recommend waterproof types made of non-metallic composites,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
  • Health risk related to magnet particles may arise, in case of ingestion, which is significant in the health of young users. Furthermore, miniature parts from these products might disrupt scanning if inside the body,
  • Due to a complex production process, their cost is relatively high,

Magnetic strength at its maximum – what it depends on?

The given strength of the magnet corresponds to the optimal strength, calculated in ideal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • at room temperature

Impact of factors on magnetic holding capacity in practice

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate reduces the holding force.

Precautions

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are especially delicate, resulting in their breakage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If the joining of neodymium magnets is not controlled, then they may crumble and also crack. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Exercise caution!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98