e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. All magnesy neodymowe in our store are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for fishing F400 GOLD

Where to buy very strong magnet? Magnetic holders in airtight and durable steel casing are perfect for use in challenging weather conditions, including during snow and rain see more...

magnetic holders

Magnetic holders can be applied to improve production, exploring underwater areas, or searching for meteorites from gold more information...

Shipping always shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

UMT 11x17 colorless / N38 - board holder

board holder

Catalog no 230266

GTIN: 5906301814290

5

Diameter Ø [±0,1 mm]

11 mm

Height [±0,1 mm]

17 mm

Weight

3 g

Coating

[NiCuNi] nickel

1.538 with VAT / pcs + price for transport

1.250 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.250 ZŁ
1.538 ZŁ
price from 300 pcs
1.175 ZŁ
1.445 ZŁ
price from 650 pcs
1.100 ZŁ
1.353 ZŁ

Not sure about your choice?

Contact us by phone +48 888 99 98 98 if you prefer get in touch using request form the contact page.
Strength as well as structure of magnetic components can be estimated with our power calculator.

Order by 14:00 and we’ll ship today!

UMT 11x17 colorless / N38 - board holder

Specification/characteristics UMT 11x17 colorless / N38 - board holder
properties
values
Cat. no.
230266
GTIN
5906301814290
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
11 mm [±0,1 mm]
Height
17 mm [±0,1 mm]
Weight
3 g [±0,1 mm]
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their immense pulling force, neodymium magnets offer the following advantages:

  • They retain their full power for almost 10 years – the loss is just ~1% (according to analyses),
  • They protect against demagnetization induced by ambient magnetic fields remarkably well,
  • In other words, due to the glossy nickel coating, the magnet obtains an stylish appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
  • Significant impact in cutting-edge sectors – they are utilized in hard drives, electric motors, healthcare devices and high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in small systems

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally reinforces its overall strength,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a damp environment, especially when used outside, we recommend using encapsulated magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing holes directly in the magnet,
  • Safety concern due to small fragments may arise, if ingested accidentally, which is significant in the context of child safety. It should also be noted that tiny components from these devices might complicate medical imaging if inside the body,
  • Due to a complex production process, their cost is relatively high,

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given pulling force of the magnet corresponds to the maximum force, calculated in a perfect environment, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under shearing force the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate decreases the load capacity.

Safety Precautions

Keep neodymium magnets away from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If the joining of neodymium magnets is not under control, at that time they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Neodymium magnets are particularly delicate, which leads to shattering.

Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

 It is essential to keep neodymium magnets out of reach from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Pay attention!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98