XT-4 magnetyzery CO i WODY użytkowej - XT-4 magnetizer
XT-4 magnetizer
Catalog no 050245
GTIN: 5906301812395
Weight
228 g
98.99 ZŁ with VAT / pcs + price for transport
80.48 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure which magnet to buy?
Pick up the phone and ask
+48 888 99 98 98
alternatively get in touch using
inquiry form
the contact section.
Strength as well as appearance of magnetic components can be checked on our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
XT-4 magnetyzery CO i WODY użytkowej - XT-4 magnetizer
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- They have constant strength, and over around ten years their attraction force decreases symbolically – ~1% (in testing),
- Their ability to resist magnetic interference from external fields is impressive,
- Because of the reflective layer of nickel, the component looks high-end,
- They have exceptional magnetic induction on the surface of the magnet,
- Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- The ability for accurate shaping as well as adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Key role in new technology industries – they are used in data storage devices, electric motors, diagnostic apparatus and other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and increases its overall durability,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a wet environment, especially when used outside, we recommend using sealed magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Potential hazard linked to microscopic shards may arise, especially if swallowed, which is crucial in the family environments. Furthermore, tiny components from these devices can hinder health screening after being swallowed,
- Due to expensive raw materials, their cost is considerably higher,
Detachment force of the magnet in optimal conditions – what contributes to it?
The given lifting capacity of the magnet means the maximum lifting force, calculated in the best circumstances, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Key elements affecting lifting force
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.
Precautions with Neodymium Magnets
It is essential to keep neodymium magnets out of reach from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Keep neodymium magnets away from the wallet, computer, and TV.
Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets may crack or crumble with uncontrolled connecting to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are extremely fragile, resulting in breaking.
Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Safety precautions!
So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.
