SM 32x150 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130297
GTIN: 5906301812906
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
150 mm
Weight
804 g
455.10 ZŁ with VAT / pcs + price for transport
370.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have doubts?
Contact us by phone
+48 22 499 98 98
otherwise contact us via
contact form
the contact page.
Specifications as well as structure of a magnet can be calculated on our
power calculator.
Same-day processing for orders placed before 14:00.
SM 32x150 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They retain their attractive force for around 10 years – the drop is just ~1% (based on simulations),
- They remain magnetized despite exposure to magnetic noise,
- Thanks to the shiny finish and gold coating, they have an aesthetic appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- With the option for customized forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Important function in advanced technical fields – they are used in hard drives, rotating machines, diagnostic apparatus as well as other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them ideal in small systems
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall durability,
- They lose field intensity at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a wet environment. If exposed to rain, we recommend using waterproof magnets, such as those made of non-metallic materials,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
- Health risk linked to microscopic shards may arise, especially if swallowed, which is important in the context of child safety. It should also be noted that tiny components from these magnets might complicate medical imaging if inside the body,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum magnetic pulling force – what affects it?
The given strength of the magnet means the optimal strength, calculated under optimal conditions, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- in a perpendicular direction of force
- in normal thermal conditions
What influences lifting capacity in practice
The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a polished steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, however under parallel forces the holding force is lower. Additionally, even a small distance {between} the magnet and the plate decreases the holding force.
Exercise Caution with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Never bring neodymium magnets close to a phone and GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can shock you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are highly delicate, they easily break as well as can become damaged.
Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Be careful!
In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.
