tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. All magnesy on our website are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnet for searching F200 GOLD

Where to buy powerful neodymium magnet? Magnet holders in solid and airtight steel casing are ideally suited for use in difficult, demanding climate conditions, including snow and rain see more...

magnets with holders

Holders with magnets can be applied to improve production, exploring underwater areas, or locating meteorites from gold see more...

Enjoy delivery of your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x150 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130297

GTIN: 5906301812906

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

150 mm

Weight

804 g

455.10 with VAT / pcs + price for transport

370.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
370.00 ZŁ
455.10 ZŁ
price from 10 pcs
351.50 ZŁ
432.34 ZŁ
price from 15 pcs
333.00 ZŁ
409.59 ZŁ

Can't decide what to choose?

Contact us by phone +48 888 99 98 98 or let us know by means of our online form the contact page.
Weight and appearance of magnetic components can be reviewed with our our magnetic calculator.

Order by 14:00 and we’ll ship today!

SM 32x150 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x150 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130297
GTIN
5906301812906
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
804 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, placed in a casing made of stainless steel usually AISI304. Due to this, it is possible to precisely remove ferromagnetic elements from other materials. A key aspect of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic elements. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in the food sector for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rollers are made from durable acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, otherwise magnetic separators, are used in metal separation, food production as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, which enables simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the better. However, the value of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are more compressed. On the other hand, when the magnet is thick, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, type AISI 316 steel exhibits the best resistance due to its exceptional corrosion resistance.
Magnetic bars stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, you should washing after each use, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and lose their power. Testing of the rollers should be carried out once every 24 months. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They have constant strength, and over more than 10 years their attraction force decreases symbolically – ~1% (in testing),
  • Their ability to resist magnetic interference from external fields is notable,
  • The use of a mirror-like nickel surface provides a smooth finish,
  • Magnetic induction on the surface of these magnets is very strong,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for customized forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Wide application in modern technologies – they serve a purpose in computer drives, electric motors, medical equipment and sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them useful in miniature devices

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time reinforces its overall durability,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
  • Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
  • Safety concern from tiny pieces may arise, especially if swallowed, which is notable in the family environments. Additionally, miniature parts from these devices might hinder health screening after being swallowed,
  • Due to expensive raw materials, their cost is relatively high,

Best holding force of the magnet in ideal parameterswhat affects it?

The given holding capacity of the magnet corresponds to the highest holding force, calculated in the best circumstances, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the lifting capacity is smaller. In addition, even a slight gap {between} the magnet and the plate reduces the lifting capacity.

Exercise Caution with Neodymium Magnets

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are extremely fragile, resulting in their cracking.

Neodymium magnetic are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Neodymium magnets jump and touch each other mutually within a distance of several to around 10 cm from each other.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

 Maintain neodymium magnets away from children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Pay attention!

To show why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98