tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are available for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnet for fishing F300 GOLD

Where to buy powerful magnet? Holders with magnets in airtight and durable steel casing are ideally suited for use in difficult weather conditions, including in the rain and snow more information...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, exploring underwater areas, or finding space rocks from gold see more...

Enjoy delivery of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x150 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130297

GTIN: 5906301812906

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

150 mm

Weight

804 g

455.10 with VAT / pcs + price for transport

370.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
370.00 ZŁ
455.10 ZŁ
price from 10 pcs
351.50 ZŁ
432.34 ZŁ
price from 15 pcs
333.00 ZŁ
409.59 ZŁ

Not sure about your choice?

Give us a call +48 888 99 98 98 if you prefer send us a note via our online form the contact form page.
Force and appearance of magnets can be estimated using our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

SM 32x150 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x150 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130297
GTIN
5906301812906
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
150 mm [±0,1 mm]
Weight
804 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, placed in a casing made of stainless steel mostly AISI304. As a result, it is possible to effectively segregate ferromagnetic particles from other materials. A fundamental component of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be collected. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to segregate ferromagnetic elements. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in food production to clear metallic contaminants, including iron fragments or iron dust. Our rollers are made from acid-resistant steel, AISI 304, suitable for use in food.
Magnetic rollers, otherwise cylindrical magnets, are used in food production, metal separation as well as recycling. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are composed of a neodymium magnet anchored in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the greater the magnet's power, the more efficient it is. But, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be short. Otherwise, when the magnet is thick, the force lines are extended and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, most often stainless steel is used, especially types AISI 304, AISI 316, and AISI 316L.
In a saltwater environment, type AISI 316 steel is highly recommended thanks to its outstanding corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other devices that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, it’s worth cleaning after each use, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Magnetic field measurements should be carried out every two years. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
  • They protect against demagnetization induced by surrounding magnetic fields remarkably well,
  • The use of a mirror-like gold surface provides a refined finish,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their application range,
  • Significant impact in modern technologies – they are utilized in computer drives, electric motors, clinical machines and sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and reinforces its overall durability,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
  • Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
  • Safety concern due to small fragments may arise, in case of ingestion, which is significant in the context of child safety. Furthermore, minuscule fragments from these assemblies have the potential to hinder health screening once in the system,
  • Due to the price of neodymium, their cost is considerably higher,

Highest magnetic holding forcewhat affects it?

The given strength of the magnet means the optimal strength, determined in ideal conditions, that is:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Determinants of lifting force in real conditions

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.

Handle Neodymium Magnets Carefully

Neodymium magnetic are incredibly fragile, they easily crack as well as can crumble.

Magnets made of neodymium are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

 It is important to keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Pay attention!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98