Neodymium magnets: power you're looking for

Looking for huge power in small size? We offer complete range of various shapes and sizes. Best choice for domestic applications, garage and industrial tasks. Check our offer available immediately.

see price list and dimensions

Grips for underwater searches

Start your adventure with treasure salvaging! Our double-handle grips (F200, F400) provide safety guarantee and immense power. Stainless steel construction and reinforced ropes are reliable in any water.

choose your water magnet

Reliable threaded grips

Professional solutions for fixing without drilling. Threaded grips (external or internal) provide instant organization of work on warehouses. Perfect for installing lamps, sensors and ads.

see available threads

🚚 Order by 14:00 – we'll ship today!

Dhit sp. z o.o.
Product available Ships tomorrow

MW 8x15 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010102

GTIN/EAN: 5906301811015

5.00

Diameter Ø

8 mm [±0,1 mm]

Height

15 mm [±0,1 mm]

Weight

5.65 g

Magnetization Direction

↑ axial

Load capacity

1.47 kg / 14.45 N

Magnetic Induction

598.12 mT / 5981 Gs

Coating

[NiCuNi] Nickel

3.44 with VAT / pcs + price for transport

2.80 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.80 ZŁ
3.44 ZŁ
price from 250 pcs
2.63 ZŁ
3.24 ZŁ
price from 900 pcs
2.46 ZŁ
3.03 ZŁ
Looking for a better price?

Contact us by phone +48 22 499 98 98 alternatively contact us via contact form through our site.
Specifications and shape of magnets can be calculated using our force calculator.

Orders placed before 14:00 will be shipped the same business day.

Product card - MW 8x15 / N38 - cylindrical magnet

Specification / characteristics - MW 8x15 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010102
GTIN/EAN 5906301811015
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 8 mm [±0,1 mm]
Height 15 mm [±0,1 mm]
Weight 5.65 g
Magnetization Direction ↑ axial
Load capacity ~ ? 1.47 kg / 14.45 N
Magnetic Induction ~ ? 598.12 mT / 5981 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 8x15 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the product - report

These data represent the direct effect of a mathematical analysis. Results rely on algorithms for the material Nd2Fe14B. Actual parameters may differ. Use these calculations as a preliminary roadmap during assembly planning.

Table 1: Static pull force (pull vs distance) - interaction chart
MW 8x15 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 5975 Gs
597.5 mT
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
low risk
1 mm 4511 Gs
451.1 mT
0.84 kg / 1.85 LBS
837.8 g / 8.2 N
low risk
2 mm 3262 Gs
326.2 mT
0.44 kg / 0.97 LBS
438.2 g / 4.3 N
low risk
3 mm 2332 Gs
233.2 mT
0.22 kg / 0.49 LBS
224.0 g / 2.2 N
low risk
5 mm 1238 Gs
123.8 mT
0.06 kg / 0.14 LBS
63.1 g / 0.6 N
low risk
10 mm 366 Gs
36.6 mT
0.01 kg / 0.01 LBS
5.5 g / 0.1 N
low risk
15 mm 155 Gs
15.5 mT
0.00 kg / 0.00 LBS
1.0 g / 0.0 N
low risk
20 mm 80 Gs
8.0 mT
0.00 kg / 0.00 LBS
0.3 g / 0.0 N
low risk
30 mm 30 Gs
3.0 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
low risk
50 mm 8 Gs
0.8 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
low risk

Table 2: Sliding force (wall)
MW 8x15 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.29 kg / 0.65 LBS
294.0 g / 2.9 N
1 mm Stal (~0.2) 0.17 kg / 0.37 LBS
168.0 g / 1.6 N
2 mm Stal (~0.2) 0.09 kg / 0.19 LBS
88.0 g / 0.9 N
3 mm Stal (~0.2) 0.04 kg / 0.10 LBS
44.0 g / 0.4 N
5 mm Stal (~0.2) 0.01 kg / 0.03 LBS
12.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 LBS
2.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N

Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 8x15 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.44 kg / 0.97 LBS
441.0 g / 4.3 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.29 kg / 0.65 LBS
294.0 g / 2.9 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.15 kg / 0.32 LBS
147.0 g / 1.4 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.74 kg / 1.62 LBS
735.0 g / 7.2 N

Table 4: Steel thickness (substrate influence) - power losses
MW 8x15 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.15 kg / 0.32 LBS
147.0 g / 1.4 N
1 mm
25%
0.37 kg / 0.81 LBS
367.5 g / 3.6 N
2 mm
50%
0.74 kg / 1.62 LBS
735.0 g / 7.2 N
3 mm
75%
1.10 kg / 2.43 LBS
1102.5 g / 10.8 N
5 mm
100%
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
10 mm
100%
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
11 mm
100%
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
12 mm
100%
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N

Table 5: Working in heat (material behavior) - thermal limit
MW 8x15 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
OK
40 °C -2.2% 1.44 kg / 3.17 LBS
1437.7 g / 14.1 N
OK
60 °C -4.4% 1.41 kg / 3.10 LBS
1405.3 g / 13.8 N
OK
80 °C -6.6% 1.37 kg / 3.03 LBS
1373.0 g / 13.5 N
100 °C -28.8% 1.05 kg / 2.31 LBS
1046.6 g / 10.3 N

Table 6: Magnet-Magnet interaction (attraction) - field range
MW 8x15 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Lateral Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 11.06 kg / 24.39 LBS
6 130 Gs
1.66 kg / 3.66 LBS
1660 g / 16.3 N
N/A
1 mm 8.49 kg / 18.72 LBS
10 469 Gs
1.27 kg / 2.81 LBS
1274 g / 12.5 N
7.64 kg / 16.85 LBS
~0 Gs
2 mm 6.31 kg / 13.90 LBS
9 022 Gs
0.95 kg / 2.09 LBS
946 g / 9.3 N
5.68 kg / 12.51 LBS
~0 Gs
3 mm 4.59 kg / 10.12 LBS
7 697 Gs
0.69 kg / 1.52 LBS
688 g / 6.8 N
4.13 kg / 9.11 LBS
~0 Gs
5 mm 2.36 kg / 5.20 LBS
5 516 Gs
0.35 kg / 0.78 LBS
354 g / 3.5 N
2.12 kg / 4.68 LBS
~0 Gs
10 mm 0.48 kg / 1.05 LBS
2 476 Gs
0.07 kg / 0.16 LBS
71 g / 0.7 N
0.43 kg / 0.94 LBS
~0 Gs
20 mm 0.04 kg / 0.09 LBS
731 Gs
0.01 kg / 0.01 LBS
6 g / 0.1 N
0.04 kg / 0.08 LBS
~0 Gs
50 mm 0.00 kg / 0.00 LBS
94 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
60 mm 0.00 kg / 0.00 LBS
60 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
70 mm 0.00 kg / 0.00 LBS
41 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
80 mm 0.00 kg / 0.00 LBS
29 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
90 mm 0.00 kg / 0.00 LBS
21 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
100 mm 0.00 kg / 0.00 LBS
16 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs

Table 7: Safety (HSE) (electronics) - warnings
MW 8x15 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 6.0 cm
Hearing aid 10 Gs (1.0 mT) 5.0 cm
Mechanical watch 20 Gs (2.0 mT) 4.0 cm
Mobile device 40 Gs (4.0 mT) 3.0 cm
Remote 50 Gs (5.0 mT) 2.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 1.0 cm

Table 8: Impact energy (cracking risk) - collision effects
MW 8x15 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 16.31 km/h
(4.53 m/s)
0.06 J
30 mm 28.18 km/h
(7.83 m/s)
0.17 J
50 mm 36.37 km/h
(10.10 m/s)
0.29 J
100 mm 51.44 km/h
(14.29 m/s)
0.58 J

Table 9: Surface protection spec
MW 8x15 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Flux)
MW 8x15 / N38

Parameter Value SI Unit / Description
Magnetic Flux 3 306 Mx 33.1 µWb
Pc Coefficient 1.19 High (Stable)

Table 11: Submerged application
MW 8x15 / N38

Environment Effective steel pull Effect
Air (land) 1.47 kg Standard
Water (riverbed) 1.68 kg
(+0.21 kg buoyancy gain)
+14.5%
Warning: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Sliding resistance

*Note: On a vertical surface, the magnet holds just ~20% of its max power.

2. Steel saturation

*Thin metal sheet (e.g. 0.5mm PC case) severely limits the holding force.

3. Temperature resistance

*For standard magnets, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.19

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010102-2026
Quick Unit Converter
Force (pull)

Field Strength

Other proposals

This product is an incredibly powerful rod magnet, composed of advanced NdFeB material, which, at dimensions of Ø8x15 mm, guarantees the highest energy density. The MW 8x15 / N38 model features a tolerance of ±0.1mm and industrial build quality, making it an excellent solution for the most demanding engineers and designers. As a magnetic rod with significant force (approx. 1.47 kg), this product is available off-the-shelf from our European logistics center, ensuring quick order fulfillment. Moreover, its Ni-Cu-Ni coating shields it against corrosion in standard operating conditions, ensuring an aesthetic appearance and durability for years.
This model is created for building generators, advanced Hall effect sensors, and efficient magnetic separators, where field concentration on a small surface counts. Thanks to the high power of 14.45 N with a weight of only 5.65 g, this cylindrical magnet is indispensable in electronics and wherever low weight is crucial.
Since our magnets have a very precise dimensions, the best method is to glue them into holes with a slightly larger diameter (e.g., 8.1 mm) using epoxy glues. To ensure long-term durability in industry, anaerobic resins are used, which do not react with the nickel coating and fill the gap, guaranteeing high repeatability of the connection.
Magnets N38 are suitable for 90% of applications in automation and machine building, where extreme miniaturization with maximum force is not required. If you need the strongest magnets in the same volume (Ø8x15), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard in continuous sale in our warehouse.
The presented product is a neodymium magnet with precisely defined parameters: diameter 8 mm and height 15 mm. The value of 14.45 N means that the magnet is capable of holding a weight many times exceeding its own mass of 5.65 g. The product has a [NiCuNi] coating, which protects the surface against external factors, giving it an aesthetic, silvery shine.
Standardly, the magnetic axis runs through the center of the cylinder, causing the greatest attraction force to occur on the bases with a diameter of 8 mm. Thanks to this, the magnet can be easily glued into a hole and achieve a strong field on the front surface. On request, we can also produce versions magnetized through the diameter if your project requires it.

Pros as well as cons of rare earth magnets.

Benefits

In addition to their magnetic capacity, neodymium magnets provide the following advantages:
  • Their power is durable, and after around 10 years it decreases only by ~1% (according to research),
  • Neodymium magnets are characterized by extremely resistant to loss of magnetic properties caused by external magnetic fields,
  • In other words, due to the aesthetic layer of nickel, the element gains visual value,
  • Magnetic induction on the surface of the magnet remains exceptional,
  • Neodymium magnets are characterized by very high magnetic induction on the magnet surface and are able to act (depending on the shape) even at a temperature of 230°C or more...
  • Possibility of accurate machining and adjusting to precise needs,
  • Significant place in modern industrial fields – they find application in HDD drives, motor assemblies, diagnostic systems, and technologically advanced constructions.
  • Thanks to their power density, small magnets offer high operating force, with minimal size,

Limitations

Problematic aspects of neodymium magnets: tips and applications.
  • They are prone to damage upon too strong impacts. To avoid cracks, it is worth protecting magnets in special housings. Such protection not only protects the magnet but also increases its resistance to damage
  • Neodymium magnets decrease their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
  • Magnets exposed to a humid environment can corrode. Therefore when using outdoors, we suggest using waterproof magnets made of rubber, plastic or other material protecting against moisture
  • Due to limitations in creating threads and complicated forms in magnets, we recommend using a housing - magnetic mount.
  • Possible danger related to microscopic parts of magnets can be dangerous, if swallowed, which is particularly important in the context of child safety. It is also worth noting that tiny parts of these magnets can complicate diagnosis medical when they are in the body.
  • Higher cost of purchase is a significant factor to consider compared to ceramic magnets, especially in budget applications

Lifting parameters

Maximum magnetic pulling forcewhat it depends on?

The specified lifting capacity represents the maximum value, measured under laboratory conditions, meaning:
  • using a plate made of high-permeability steel, acting as a ideal flux conductor
  • possessing a massiveness of min. 10 mm to ensure full flux closure
  • characterized by smoothness
  • under conditions of no distance (metal-to-metal)
  • during detachment in a direction vertical to the mounting surface
  • at room temperature

Key elements affecting lifting force

Please note that the working load may be lower subject to the following factors, in order of importance:
  • Distance – the presence of foreign body (rust, tape, gap) acts as an insulator, which lowers power steeply (even by 50% at 0.5 mm).
  • Force direction – note that the magnet holds strongest perpendicularly. Under shear forces, the capacity drops drastically, often to levels of 20-30% of the nominal value.
  • Base massiveness – too thin sheet causes magnetic saturation, causing part of the power to be lost into the air.
  • Plate material – mild steel attracts best. Alloy admixtures reduce magnetic permeability and holding force.
  • Plate texture – ground elements ensure maximum contact, which increases force. Uneven metal weaken the grip.
  • Thermal factor – hot environment reduces magnetic field. Exceeding the limit temperature can permanently damage the magnet.

Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, whereas under attempts to slide the magnet the holding force is lower. In addition, even a small distance between the magnet’s surface and the plate decreases the holding force.

Warnings
Crushing risk

Mind your fingers. Two powerful magnets will join immediately with a force of massive weight, destroying anything in their path. Exercise extreme caution!

Cards and drives

Data protection: Neodymium magnets can damage payment cards and sensitive devices (heart implants, hearing aids, mechanical watches).

Fire risk

Machining of neodymium magnets carries a risk of fire risk. Magnetic powder oxidizes rapidly with oxygen and is hard to extinguish.

Respect the power

Before starting, read the rules. Sudden snapping can destroy the magnet or injure your hand. Think ahead.

Material brittleness

Neodymium magnets are ceramic materials, which means they are fragile like glass. Collision of two magnets leads to them shattering into small pieces.

Keep away from electronics

GPS units and smartphones are highly sensitive to magnetism. Close proximity with a powerful NdFeB magnet can ruin the sensors in your phone.

Heat sensitivity

Do not overheat. NdFeB magnets are susceptible to heat. If you require operation above 80°C, ask us about special high-temperature series (H, SH, UH).

Keep away from children

Only for adults. Small elements pose a choking risk, leading to intestinal necrosis. Store away from kids and pets.

Health Danger

Warning for patients: Strong magnetic fields affect electronics. Keep minimum 30 cm distance or request help to work with the magnets.

Allergic reactions

Nickel alert: The Ni-Cu-Ni coating contains nickel. If skin irritation happens, cease working with magnets and use protective gear.

Safety First! Details about hazards in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98