MW 8x15 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010102
GTIN: 5906301811015
Diameter Ø [±0,1 mm]
8 mm
Height [±0,1 mm]
15 mm
Weight
5.65 g
Magnetization Direction
↑ axial
Load capacity
6.64 kg / 65.12 N
Magnetic Induction
598.12 mT
Coating
[NiCuNi] nickel
3.44 ZŁ with VAT / pcs + price for transport
2.80 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us now
+48 22 499 98 98
if you prefer contact us via
contact form
through our site.
Weight and structure of magnets can be tested with our
online calculation tool.
Order by 14:00 and we’ll ship today!
MW 8x15 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous field intensity, neodymium magnets offer the following advantages:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
- They remain magnetized despite exposure to magnetic surroundings,
- By applying a shiny layer of silver, the element gains a modern look,
- The outer field strength of the magnet shows advanced magnetic properties,
- With the right combination of magnetic alloys, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
- The ability for accurate shaping and customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Key role in new technology industries – they find application in computer drives, electric drives, medical equipment or even other advanced devices,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of magnetic elements:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time reinforces its overall resistance,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a humid environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
- Safety concern due to small fragments may arise, if ingested accidentally, which is significant in the context of child safety. Furthermore, small elements from these magnets might complicate medical imaging when ingested,
- Due to the price of neodymium, their cost is relatively high,
Maximum holding power of the magnet – what contributes to it?
The given strength of the magnet means the optimal strength, measured in ideal conditions, namely:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- with vertical force applied
- in normal thermal conditions
Practical aspects of lifting capacity – factors
Practical lifting force is determined by factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet and the plate decreases the lifting capacity.
Precautions with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Magnets are not toys, youngest should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Magnets made of neodymium are characterized by their fragility, which can cause them to crumble.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Warning!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are powerful neodymium magnets?.
