MW 8x15 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010102
GTIN/EAN: 5906301811015
Diameter Ø
8 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
5.65 g
Magnetization Direction
↑ axial
Load capacity
1.47 kg / 14.45 N
Magnetic Induction
598.12 mT / 5981 Gs
Coating
[NiCuNi] Nickel
3.44 ZŁ with VAT / pcs + price for transport
2.80 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
if you prefer send us a note via
our online form
through our site.
Parameters along with structure of a magnet can be estimated with our
modular calculator.
Same-day processing for orders placed before 14:00.
Physical properties - MW 8x15 / N38 - cylindrical magnet
Specification / characteristics - MW 8x15 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010102 |
| GTIN/EAN | 5906301811015 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 8 mm [±0,1 mm] |
| Height | 15 mm [±0,1 mm] |
| Weight | 5.65 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.47 kg / 14.45 N |
| Magnetic Induction ~ ? | 598.12 mT / 5981 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the product - report
These information are the result of a physical simulation. Values are based on algorithms for the material Nd2Fe14B. Real-world performance might slightly differ. Please consider these calculations as a supplementary guide when designing systems.
Table 1: Static pull force (force vs gap) - interaction chart
MW 8x15 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5975 Gs
597.5 mT
|
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
|
safe |
| 1 mm |
4511 Gs
451.1 mT
|
0.84 kg / 1.85 LBS
837.8 g / 8.2 N
|
safe |
| 2 mm |
3262 Gs
326.2 mT
|
0.44 kg / 0.97 LBS
438.2 g / 4.3 N
|
safe |
| 3 mm |
2332 Gs
233.2 mT
|
0.22 kg / 0.49 LBS
224.0 g / 2.2 N
|
safe |
| 5 mm |
1238 Gs
123.8 mT
|
0.06 kg / 0.14 LBS
63.1 g / 0.6 N
|
safe |
| 10 mm |
366 Gs
36.6 mT
|
0.01 kg / 0.01 LBS
5.5 g / 0.1 N
|
safe |
| 15 mm |
155 Gs
15.5 mT
|
0.00 kg / 0.00 LBS
1.0 g / 0.0 N
|
safe |
| 20 mm |
80 Gs
8.0 mT
|
0.00 kg / 0.00 LBS
0.3 g / 0.0 N
|
safe |
| 30 mm |
30 Gs
3.0 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
Table 2: Sliding load (vertical surface)
MW 8x15 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.29 kg / 0.65 LBS
294.0 g / 2.9 N
|
| 1 mm | Stal (~0.2) |
0.17 kg / 0.37 LBS
168.0 g / 1.6 N
|
| 2 mm | Stal (~0.2) |
0.09 kg / 0.19 LBS
88.0 g / 0.9 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 0.10 LBS
44.0 g / 0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.03 LBS
12.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MW 8x15 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.44 kg / 0.97 LBS
441.0 g / 4.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.29 kg / 0.65 LBS
294.0 g / 2.9 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.15 kg / 0.32 LBS
147.0 g / 1.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.74 kg / 1.62 LBS
735.0 g / 7.2 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 8x15 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.15 kg / 0.32 LBS
147.0 g / 1.4 N
|
| 1 mm |
|
0.37 kg / 0.81 LBS
367.5 g / 3.6 N
|
| 2 mm |
|
0.74 kg / 1.62 LBS
735.0 g / 7.2 N
|
| 3 mm |
|
1.10 kg / 2.43 LBS
1102.5 g / 10.8 N
|
| 5 mm |
|
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
|
| 10 mm |
|
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
|
| 11 mm |
|
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
|
| 12 mm |
|
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
|
Table 5: Thermal resistance (stability) - thermal limit
MW 8x15 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.47 kg / 3.24 LBS
1470.0 g / 14.4 N
|
OK |
| 40 °C | -2.2% |
1.44 kg / 3.17 LBS
1437.7 g / 14.1 N
|
OK |
| 60 °C | -4.4% |
1.41 kg / 3.10 LBS
1405.3 g / 13.8 N
|
OK |
| 80 °C | -6.6% |
1.37 kg / 3.03 LBS
1373.0 g / 13.5 N
|
|
| 100 °C | -28.8% |
1.05 kg / 2.31 LBS
1046.6 g / 10.3 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MW 8x15 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
11.06 kg / 24.39 LBS
6 130 Gs
|
1.66 kg / 3.66 LBS
1660 g / 16.3 N
|
N/A |
| 1 mm |
8.49 kg / 18.72 LBS
10 469 Gs
|
1.27 kg / 2.81 LBS
1274 g / 12.5 N
|
7.64 kg / 16.85 LBS
~0 Gs
|
| 2 mm |
6.31 kg / 13.90 LBS
9 022 Gs
|
0.95 kg / 2.09 LBS
946 g / 9.3 N
|
5.68 kg / 12.51 LBS
~0 Gs
|
| 3 mm |
4.59 kg / 10.12 LBS
7 697 Gs
|
0.69 kg / 1.52 LBS
688 g / 6.8 N
|
4.13 kg / 9.11 LBS
~0 Gs
|
| 5 mm |
2.36 kg / 5.20 LBS
5 516 Gs
|
0.35 kg / 0.78 LBS
354 g / 3.5 N
|
2.12 kg / 4.68 LBS
~0 Gs
|
| 10 mm |
0.48 kg / 1.05 LBS
2 476 Gs
|
0.07 kg / 0.16 LBS
71 g / 0.7 N
|
0.43 kg / 0.94 LBS
~0 Gs
|
| 20 mm |
0.04 kg / 0.09 LBS
731 Gs
|
0.01 kg / 0.01 LBS
6 g / 0.1 N
|
0.04 kg / 0.08 LBS
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 LBS
94 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 LBS
60 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 LBS
41 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 LBS
29 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
21 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
16 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MW 8x15 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 6.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 4.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.0 cm |
| Remote | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (kinetic energy) - collision effects
MW 8x15 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
16.31 km/h
(4.53 m/s)
|
0.06 J | |
| 30 mm |
28.18 km/h
(7.83 m/s)
|
0.17 J | |
| 50 mm |
36.37 km/h
(10.10 m/s)
|
0.29 J | |
| 100 mm |
51.44 km/h
(14.29 m/s)
|
0.58 J |
Table 9: Anti-corrosion coating durability
MW 8x15 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 8x15 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 3 306 Mx | 33.1 µWb |
| Pc Coefficient | 1.19 | High (Stable) |
Table 11: Physics of underwater searching
MW 8x15 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.47 kg | Standard |
| Water (riverbed) |
1.68 kg
(+0.21 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Caution: On a vertical wall, the magnet holds merely approx. 20-30% of its perpendicular strength.
2. Steel thickness impact
*Thin steel (e.g. computer case) severely limits the holding force.
3. Temperature resistance
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.19
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out also products
Advantages as well as disadvantages of rare earth magnets.
Pros
- They do not lose magnetism, even over around ten years – the drop in power is only ~1% (theoretically),
- They possess excellent resistance to weakening of magnetic properties as a result of external magnetic sources,
- By covering with a lustrous layer of nickel, the element gains an elegant look,
- The surface of neodymium magnets generates a concentrated magnetic field – this is one of their assets,
- Neodymium magnets are characterized by very high magnetic induction on the magnet surface and are able to act (depending on the shape) even at a temperature of 230°C or more...
- Thanks to flexibility in forming and the ability to customize to complex applications,
- Fundamental importance in advanced technology sectors – they are used in hard drives, electric drive systems, diagnostic systems, also other advanced devices.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Limitations
- To avoid cracks upon strong impacts, we recommend using special steel housings. Such a solution secures the magnet and simultaneously improves its durability.
- We warn that neodymium magnets can reduce their strength at high temperatures. To prevent this, we suggest our specialized [AH] magnets, which work effectively even at 230°C.
- When exposed to humidity, magnets usually rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation as well as corrosion.
- Limited ability of making nuts in the magnet and complex forms - recommended is a housing - magnetic holder.
- Potential hazard related to microscopic parts of magnets pose a threat, when accidentally swallowed, which gains importance in the aspect of protecting the youngest. Additionally, tiny parts of these magnets can complicate diagnosis medical when they are in the body.
- Due to neodymium price, their price exceeds standard values,
Holding force characteristics
Highest magnetic holding force – what contributes to it?
- on a base made of structural steel, optimally conducting the magnetic field
- with a thickness minimum 10 mm
- with an polished touching surface
- under conditions of no distance (surface-to-surface)
- during detachment in a direction perpendicular to the mounting surface
- in neutral thermal conditions
Practical aspects of lifting capacity – factors
- Air gap (between the magnet and the plate), as even a very small clearance (e.g. 0.5 mm) results in a decrease in force by up to 50% (this also applies to varnish, corrosion or dirt).
- Loading method – declared lifting capacity refers to pulling vertically. When slipping, the magnet holds much less (typically approx. 20-30% of maximum force).
- Substrate thickness – for full efficiency, the steel must be adequately massive. Paper-thin metal limits the attraction force (the magnet "punches through" it).
- Plate material – low-carbon steel gives the best results. Higher carbon content lower magnetic permeability and lifting capacity.
- Plate texture – ground elements ensure maximum contact, which improves force. Rough surfaces reduce efficiency.
- Temperature – temperature increase causes a temporary drop of induction. Check the maximum operating temperature for a given model.
Lifting capacity was measured with the use of a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under parallel forces the holding force is lower. In addition, even a small distance between the magnet and the plate lowers the load capacity.
Warnings
Nickel coating and allergies
Some people have a contact allergy to nickel, which is the common plating for neodymium magnets. Extended handling might lead to an allergic reaction. We suggest wear protective gloves.
Precision electronics
GPS units and smartphones are extremely susceptible to magnetic fields. Close proximity with a powerful NdFeB magnet can decalibrate the internal compass in your phone.
Magnetic media
Very strong magnetic fields can erase data on credit cards, hard drives, and other magnetic media. Stay away of at least 10 cm.
Do not overheat magnets
Keep cool. NdFeB magnets are susceptible to heat. If you need resistance above 80°C, ask us about special high-temperature series (H, SH, UH).
Shattering risk
Despite the nickel coating, neodymium is delicate and cannot withstand shocks. Avoid impacts, as the magnet may shatter into hazardous fragments.
Powerful field
Before use, read the rules. Sudden snapping can break the magnet or hurt your hand. Think ahead.
Do not drill into magnets
Machining of neodymium magnets carries a risk of fire hazard. Neodymium dust oxidizes rapidly with oxygen and is difficult to extinguish.
Crushing force
Risk of injury: The attraction force is so immense that it can result in hematomas, pinching, and broken bones. Protective gloves are recommended.
Do not give to children
Absolutely keep magnets away from children. Ingestion danger is significant, and the consequences of magnets connecting inside the body are fatal.
Danger to pacemakers
Warning for patients: Powerful magnets affect medical devices. Keep at least 30 cm distance or ask another person to work with the magnets.
