SM 25x200 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130364
GTIN: 5906301813125
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
200 mm
Weight
0.01 g
615.00 ZŁ with VAT / pcs + price for transport
500.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us
+48 888 99 98 98
otherwise contact us through
form
through our site.
Strength as well as shape of magnetic components can be verified using our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
SM 25x200 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
- Their ability to resist magnetic interference from external fields is notable,
- Thanks to the polished finish and silver coating, they have an visually attractive appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- The ability for precise shaping or customization to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
- Significant impact in modern technologies – they are used in HDDs, rotating machines, diagnostic apparatus as well as other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall robustness,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
- Potential hazard from tiny pieces may arise, when consumed by mistake, which is important in the health of young users. It should also be noted that miniature parts from these assemblies may hinder health screening once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Best holding force of the magnet in ideal parameters – what affects it?
The given holding capacity of the magnet represents the highest holding force, calculated under optimal conditions, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in practice – influencing factors
In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the holding force is lower. Moreover, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.
Precautions
Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will crack or crumble with careless joining to each other. You can't move them to each other. At a distance less than 10 cm you should hold them extremely strongly.
Keep neodymium magnets away from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are fragile as well as can easily break as well as get damaged.
Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
It is important to maintain neodymium magnets away from children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Exercise caution!
In order to show why neodymium magnets are so dangerous, see the article - How very dangerous are strong neodymium magnets?.