SM 25x200 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130364
GTIN: 5906301813125
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
200 mm
Weight
0.01 g
615.00 ZŁ with VAT / pcs + price for transport
500.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have problems deciding?
Call us now
+48 888 99 98 98
or drop us a message through
contact form
through our site.
Lifting power along with appearance of magnetic components can be analyzed on our
our magnetic calculator.
Order by 14:00 and we’ll ship today!
SM 25x200 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- Their power is durable, and after around 10 years, it drops only by ~1% (theoretically),
- Their ability to resist magnetic interference from external fields is impressive,
- By applying a bright layer of nickel, the element gains a modern look,
- They have very high magnetic induction on the surface of the magnet,
- Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- The ability for precise shaping as well as customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Wide application in new technology industries – they serve a purpose in HDDs, electromechanical systems, diagnostic apparatus as well as technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them ideal in miniature devices
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to physical collisions, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall durability,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
- Limited ability to create complex details in the magnet – the use of a housing is recommended,
- Potential hazard linked to microscopic shards may arise, in case of ingestion, which is notable in the protection of children. Furthermore, minuscule fragments from these magnets have the potential to hinder health screening if inside the body,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given pulling force of the magnet corresponds to the maximum force, determined in ideal conditions, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured by applying a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.
Caution with Neodymium Magnets
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets are delicate as well as can easily crack and get damaged.
Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Neodymium magnets are the strongest magnets ever created, and their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will crack or alternatively crumble with uncontrolled joining to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Caution!
In order to show why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.
