e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. Practically all "magnets" in our store are available for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for fishing F300 GOLD

Where to purchase very strong magnet? Holders with magnets in airtight, solid steel casing are excellent for use in challenging climate conditions, including during snow and rain see...

magnets with holders

Magnetic holders can be used to enhance production, underwater exploration, or locating space rocks from gold more information...

Enjoy delivery of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships tomorrow

SM 25x200 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130364

GTIN: 5906301813125

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

200 mm

Weight

0.01 g

615.00 with VAT / pcs + price for transport

500.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
500.00 ZŁ
615.00 ZŁ
price from 5 pcs
475.00 ZŁ
584.25 ZŁ
price from 10 pcs
450.00 ZŁ
553.50 ZŁ

Not sure about your choice?

Call us +48 888 99 98 98 otherwise drop us a message using our online form through our site.
Strength along with structure of a neodymium magnet can be calculated using our force calculator.

Order by 14:00 and we’ll ship today!

SM 25x200 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x200 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130364
GTIN
5906301813125
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic rod is the basic building block of grate separators. Its task is to separate metal filings from the transported material. Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The construction is based on a sealed stainless steel housing. The center is filled with NdFeB magnets arranged to maximize the field on the surface. Thanks to this, the rod is durable and hygienic.
Metal filings stick very firmly to the surface, so cleaning requires strength or a trick. You can use compressed air or special non-magnetic strippers. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The Gauss value tells us how effectively the magnet will catch small impurities. Standard rods (~8000 Gs) are sufficient for bolts, nails, and chips. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
We fulfill custom orders for bars matched to your machine. We offer various tip options: threaded holes (e.g., M8, M10), protruding screws, flat studs, or handles. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (according to literature),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • Because of the lustrous layer of gold, the component looks visually appealing,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • The ability for accurate shaping as well as adaptation to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Significant impact in advanced technical fields – they serve a purpose in data storage devices, electric drives, clinical machines or even sophisticated instruments,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and increases its overall robustness,
  • They lose power at elevated temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
  • Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
  • Possible threat from tiny pieces may arise, if ingested accidentally, which is crucial in the health of young users. Furthermore, small elements from these products can complicate medical imaging after being swallowed,
  • Due to the price of neodymium, their cost is relatively high,

Best holding force of the magnet in ideal parameterswhat it depends on?

The given holding capacity of the magnet represents the highest holding force, determined under optimal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • under standard ambient temperature

What influences lifting capacity in practice

The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the holding force is lower. In addition, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.

Precautions with Neodymium Magnets

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets will jump and also clash together within a radius of several to almost 10 cm from each other.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnetic are known for their fragility, which can cause them to become damaged.

Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Safety precautions!

To illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98