SM 25x200 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130364
GTIN: 5906301813125
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
200 mm
Weight
0.01 g
615.00 ZŁ with VAT / pcs + price for transport
500.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 888 99 98 98
if you prefer contact us by means of
contact form
our website.
Parameters along with structure of a magnet can be calculated on our
magnetic mass calculator.
Same-day processing for orders placed before 14:00.
SM 25x200 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They do not lose their strength approximately ten years – the reduction of strength is only ~1% (based on measurements),
- Their ability to resist magnetic interference from external fields is notable,
- The use of a mirror-like gold surface provides a eye-catching finish,
- Magnetic induction on the surface of these magnets is notably high,
- With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- The ability for accurate shaping or adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Wide application in new technology industries – they are utilized in computer drives, electric motors, healthcare devices as well as technologically developed systems,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of magnetic elements:
- They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall durability,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a humid environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of polymer,
- Limited ability to create threads in the magnet – the use of a housing is recommended,
- Safety concern due to small fragments may arise, when consumed by mistake, which is significant in the health of young users. It should also be noted that small elements from these assemblies might complicate medical imaging once in the system,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum lifting capacity of the magnet – what it depends on?
The given holding capacity of the magnet corresponds to the highest holding force, assessed in ideal conditions, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- with vertical force applied
- at room temperature
Lifting capacity in practice – influencing factors
In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.
Exercise Caution with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Neodymium magnets jump and also clash mutually within a radius of several to around 10 cm from each other.
Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets should not be in the vicinity children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Magnets made of neodymium are highly susceptible to damage, resulting in their cracking.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Warning!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are powerful neodymium magnets?.
