MW 16x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010034
GTIN/EAN: 5906301810339
Diameter Ø
16 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
6.03 g
Magnetization Direction
↑ axial
Load capacity
4.43 kg / 43.46 N
Magnetic Induction
277.14 mT / 2771 Gs
Coating
[NiCuNi] Nickel
3.39 ZŁ with VAT / pcs + price for transport
2.76 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
alternatively contact us through
inquiry form
the contact form page.
Force and shape of magnetic components can be checked using our
force calculator.
Same-day shipping for orders placed before 14:00.
Technical of the product - MW 16x4 / N38 - cylindrical magnet
Specification / characteristics - MW 16x4 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010034 |
| GTIN/EAN | 5906301810339 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 16 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 6.03 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 4.43 kg / 43.46 N |
| Magnetic Induction ~ ? | 277.14 mT / 2771 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the assembly - report
These values represent the direct effect of a engineering calculation. Values are based on algorithms for the material Nd2Fe14B. Operational parameters might slightly deviate from the simulation results. Use these data as a preliminary roadmap during assembly planning.
Table 1: Static pull force (force vs distance) - interaction chart
MW 16x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
strong |
| 1 mm |
2517 Gs
251.7 mT
|
3.66 kg / 8.06 lbs
3656.3 g / 35.9 N
|
strong |
| 2 mm |
2216 Gs
221.6 mT
|
2.83 kg / 6.25 lbs
2834.9 g / 27.8 N
|
strong |
| 3 mm |
1906 Gs
190.6 mT
|
2.10 kg / 4.62 lbs
2096.1 g / 20.6 N
|
strong |
| 5 mm |
1348 Gs
134.8 mT
|
1.05 kg / 2.31 lbs
1048.6 g / 10.3 N
|
safe |
| 10 mm |
542 Gs
54.2 mT
|
0.17 kg / 0.37 lbs
169.4 g / 1.7 N
|
safe |
| 15 mm |
244 Gs
24.4 mT
|
0.03 kg / 0.08 lbs
34.2 g / 0.3 N
|
safe |
| 20 mm |
125 Gs
12.5 mT
|
0.01 kg / 0.02 lbs
9.1 g / 0.1 N
|
safe |
| 30 mm |
45 Gs
4.5 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
safe |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
Table 2: Sliding capacity (wall)
MW 16x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| 1 mm | Stal (~0.2) |
0.73 kg / 1.61 lbs
732.0 g / 7.2 N
|
| 2 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
566.0 g / 5.6 N
|
| 3 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 16x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.33 kg / 2.93 lbs
1329.0 g / 13.0 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.44 kg / 0.98 lbs
443.0 g / 4.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
2.22 kg / 4.88 lbs
2215.0 g / 21.7 N
|
Table 4: Material efficiency (saturation) - power losses
MW 16x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.44 kg / 0.98 lbs
443.0 g / 4.3 N
|
| 1 mm |
|
1.11 kg / 2.44 lbs
1107.5 g / 10.9 N
|
| 2 mm |
|
2.22 kg / 4.88 lbs
2215.0 g / 21.7 N
|
| 3 mm |
|
3.32 kg / 7.32 lbs
3322.5 g / 32.6 N
|
| 5 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 10 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 11 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 12 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MW 16x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
OK |
| 40 °C | -2.2% |
4.33 kg / 9.55 lbs
4332.5 g / 42.5 N
|
OK |
| 60 °C | -4.4% |
4.24 kg / 9.34 lbs
4235.1 g / 41.5 N
|
|
| 80 °C | -6.6% |
4.14 kg / 9.12 lbs
4137.6 g / 40.6 N
|
|
| 100 °C | -28.8% |
3.15 kg / 6.95 lbs
3154.2 g / 30.9 N
|
Table 6: Two magnets (repulsion) - forces in the system
MW 16x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.51 kg / 20.98 lbs
4 379 Gs
|
1.43 kg / 3.15 lbs
1427 g / 14.0 N
|
N/A |
| 1 mm |
8.72 kg / 19.23 lbs
5 306 Gs
|
1.31 kg / 2.88 lbs
1309 g / 12.8 N
|
7.85 kg / 17.31 lbs
~0 Gs
|
| 2 mm |
7.85 kg / 17.31 lbs
5 034 Gs
|
1.18 kg / 2.60 lbs
1178 g / 11.6 N
|
7.07 kg / 15.58 lbs
~0 Gs
|
| 3 mm |
6.96 kg / 15.35 lbs
4 740 Gs
|
1.04 kg / 2.30 lbs
1044 g / 10.2 N
|
6.27 kg / 13.81 lbs
~0 Gs
|
| 5 mm |
5.26 kg / 11.60 lbs
4 121 Gs
|
0.79 kg / 1.74 lbs
789 g / 7.7 N
|
4.74 kg / 10.44 lbs
~0 Gs
|
| 10 mm |
2.25 kg / 4.97 lbs
2 696 Gs
|
0.34 kg / 0.74 lbs
338 g / 3.3 N
|
2.03 kg / 4.47 lbs
~0 Gs
|
| 20 mm |
0.36 kg / 0.80 lbs
1 083 Gs
|
0.05 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.72 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
143 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
89 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MW 16x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 7.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 4.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.5 cm |
| Car key | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (cracking risk) - collision effects
MW 16x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
27.98 km/h
(7.77 m/s)
|
0.18 J | |
| 30 mm |
47.35 km/h
(13.15 m/s)
|
0.52 J | |
| 50 mm |
61.12 km/h
(16.98 m/s)
|
0.87 J | |
| 100 mm |
86.44 km/h
(24.01 m/s)
|
1.74 J |
Table 9: Corrosion resistance
MW 16x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 16x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 6 192 Mx | 61.9 µWb |
| Pc Coefficient | 0.35 | Low (Flat) |
Table 11: Submerged application
MW 16x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 4.43 kg | Standard |
| Water (riverbed) |
5.07 kg
(+0.64 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical wall, the magnet retains merely approx. 20-30% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. 0.5mm PC case) significantly limits the holding force.
3. Thermal stability
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.35
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also deals
Pros as well as cons of rare earth magnets.
Strengths
- They have unchanged lifting capacity, and over nearly ten years their attraction force decreases symbolically – ~1% (in testing),
- They possess excellent resistance to magnetism drop as a result of external fields,
- In other words, due to the smooth finish of nickel, the element looks attractive,
- The surface of neodymium magnets generates a intense magnetic field – this is a distinguishing feature,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Thanks to the possibility of flexible molding and adaptation to individualized solutions, magnetic components can be modeled in a variety of geometric configurations, which increases their versatility,
- Key role in modern industrial fields – they find application in mass storage devices, electromotive mechanisms, precision medical tools, also technologically advanced constructions.
- Thanks to efficiency per cm³, small magnets offer high operating force, in miniature format,
Weaknesses
- They are prone to damage upon too strong impacts. To avoid cracks, it is worth protecting magnets in a protective case. Such protection not only shields the magnet but also increases its resistance to damage
- We warn that neodymium magnets can lose their power at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
- Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material resistant to moisture, in case of application outdoors
- Due to limitations in realizing nuts and complex shapes in magnets, we recommend using casing - magnetic holder.
- Health risk to health – tiny shards of magnets are risky, if swallowed, which is particularly important in the aspect of protecting the youngest. It is also worth noting that small components of these products are able to be problematic in diagnostics medical when they are in the body.
- With large orders the cost of neodymium magnets is a challenge,
Holding force characteristics
Maximum lifting force for a neodymium magnet – what contributes to it?
- using a sheet made of mild steel, functioning as a circuit closing element
- possessing a thickness of minimum 10 mm to ensure full flux closure
- with an polished touching surface
- with total lack of distance (without impurities)
- during detachment in a direction vertical to the plane
- at conditions approx. 20°C
Lifting capacity in real conditions – factors
- Clearance – existence of any layer (paint, dirt, gap) interrupts the magnetic circuit, which reduces power rapidly (even by 50% at 0.5 mm).
- Angle of force application – highest force is available only during pulling at a 90° angle. The shear force of the magnet along the plate is usually many times smaller (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Part of the magnetic field penetrates through instead of converting into lifting capacity.
- Material type – the best choice is high-permeability steel. Stainless steels may have worse magnetic properties.
- Surface finish – full contact is possible only on smooth steel. Rough texture reduce the real contact area, reducing force.
- Temperature – temperature increase causes a temporary drop of induction. Check the thermal limit for a given model.
Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under parallel forces the holding force is lower. In addition, even a small distance between the magnet and the plate lowers the load capacity.
Safety rules for work with NdFeB magnets
Danger to the youngest
Strictly store magnets out of reach of children. Choking hazard is high, and the consequences of magnets connecting inside the body are tragic.
Demagnetization risk
Control the heat. Heating the magnet to high heat will ruin its magnetic structure and strength.
Electronic hazard
Do not bring magnets close to a purse, computer, or TV. The magnetic field can destroy these devices and erase data from cards.
Allergic reactions
Certain individuals suffer from a sensitization to Ni, which is the common plating for neodymium magnets. Frequent touching may cause an allergic reaction. We strongly advise use protective gloves.
Magnetic interference
A powerful magnetic field negatively affects the operation of compasses in phones and navigation systems. Do not bring magnets near a smartphone to avoid damaging the sensors.
Dust is flammable
Powder produced during grinding of magnets is self-igniting. Avoid drilling into magnets without proper cooling and knowledge.
Bone fractures
Pinching hazard: The pulling power is so great that it can cause hematomas, pinching, and broken bones. Use thick gloves.
Caution required
Use magnets consciously. Their powerful strength can surprise even professionals. Plan your moves and do not underestimate their power.
Beware of splinters
NdFeB magnets are ceramic materials, which means they are very brittle. Collision of two magnets leads to them breaking into shards.
Health Danger
Patients with a pacemaker must maintain an safe separation from magnets. The magnetism can disrupt the functioning of the implant.
