MW 16x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010034
GTIN: 5906301810339
Diameter Ø [±0,1 mm]
16 mm
Height [±0,1 mm]
4 mm
Weight
6.03 g
Magnetization Direction
↑ axial
Load capacity
3.54 kg / 34.72 N
Magnetic Induction
277.14 mT
Coating
[NiCuNi] nickel
3.39 ZŁ with VAT / pcs + price for transport
2.76 ZŁ net + 23% VAT / pcs
1.88 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Need advice?
Give us a call
+48 22 499 98 98
or get in touch by means of
contact form
the contact form page.
Parameters along with shape of a neodymium magnet can be verified with our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
MW 16x4 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as gold, to preserve them from external factors and prolong their durability. Temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous field intensity, neodymium magnets offer the following advantages:
- They do not lose their power nearly 10 years – the decrease of lifting capacity is only ~1% (theoretically),
- They remain magnetized despite exposure to strong external fields,
- In other words, due to the glossy nickel coating, the magnet obtains an aesthetic appearance,
- They possess intense magnetic force measurable at the magnet’s surface,
- With the right combination of materials, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
- With the option for customized forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Important function in modern technologies – they are utilized in hard drives, rotating machines, clinical machines as well as other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them ideal in miniature devices
Disadvantages of neodymium magnets:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall robustness,
- They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to humidity can rust. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is difficult,
- Health risk linked to microscopic shards may arise, in case of ingestion, which is crucial in the family environments. Furthermore, minuscule fragments from these assemblies might interfere with diagnostics once in the system,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
Be Cautious with Neodymium Magnets
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If have a finger between or on the path of attracting magnets, there may be a severe cut or even a fracture.
Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets are incredibly fragile, they easily fall apart and can become damaged.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Exercise caution!
To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.