tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. All magnesy in our store are in stock for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F400 GOLD

Where to purchase very strong magnet? Magnetic holders in solid and airtight enclosure are perfect for use in difficult weather conditions, including during rain and snow more information...

magnets with holders

Holders with magnets can be used to facilitate production processes, underwater discoveries, or searching for meteorites made of ore see more...

Order is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 15x3x6 / N38 - lamellar magnet

lamellar magnet

Catalog no 020122

GTIN: 5906301811282

5

length [±0,1 mm]

15 mm

Width [±0,1 mm]

3 mm

Height [±0,1 mm]

6 mm

Weight

2.03 g

Magnetization Direction

↑ axial

Load capacity

3.18 kg / 31.19 N

Magnetic Induction

543.23 mT

Coating

[NiCuNi] nickel

0.73 with VAT / pcs + price for transport

0.59 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.59 ZŁ
0.73 ZŁ
price from 1100 pcs
0.55 ZŁ
0.68 ZŁ
price from 4300 pcs
0.52 ZŁ
0.64 ZŁ

Want to talk magnets?

Call us +48 22 499 98 98 or drop us a message by means of form the contact section.
Parameters along with appearance of a magnet can be analyzed on our modular calculator.

Order by 14:00 and we’ll ship today!

MPL 15x3x6 / N38 - lamellar magnet

Specification/characteristics MPL 15x3x6 / N38 - lamellar magnet
properties
values
Cat. no.
020122
GTIN
5906301811282
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
15 mm [±0,1 mm]
Width
3 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
2.03 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.18 kg / 31.19 N
Magnetic Induction ~ ?
543.23 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets min. MPL 15x3x6 / N38 are magnets made from neodymium in a flat form. They are known for their very strong magnetic properties, which are much stronger than traditional iron magnets.
Thanks to their high strength, flat magnets are frequently used in structures that need very strong attraction.
Most common temperature resistance of flat magnets is 80°C, but with larger dimensions, this value can increase.
In addition, flat magnets often have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to improve their corrosion resistance.
The magnet named MPL 15x3x6 / N38 i.e. a magnetic force 3.18 kg weighing a mere 2.03 grams, making it the ideal choice for projects needing a flat magnet.
Neodymium flat magnets present a range of advantages compared to other magnet shapes, which cause them being an ideal choice for a multitude of projects:
Contact surface: Thanks to their flat shape, flat magnets guarantee a larger contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often applied in different devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is important for their operation.
Mounting: Their flat shape makes it easier mounting, particularly when there's a need to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets permits creators greater flexibility in arranging them in devices, which is more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet may offer better stability, minimizing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet is dependent on the specific application and requirements. In some cases, other shapes, like cylindrical or spherical, may be a better choice.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron elements, nickel, cobalt or alloys of metals with magnetic properties. Moreover, magnets may weaker affect some other metals, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
The operation of magnets is based on the properties of the magnetic field, which is generated by the movement of electric charges within their material. Magnetic fields of these objects creates attractive interactions, which affect objects made of nickel or other ferromagnetic substances.

Magnets have two main poles: north (N) and south (S), which attract each other when they are different. Poles of the same kind, such as two north poles, act repelling on each other.
Due to these properties, magnets are often used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring strong magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the materials used.
Not all materials react to magnets, and examples of such substances are plastics, glass, wooden materials and precious stones. Moreover, magnets do not affect most metals, such as copper, aluminum materials, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, credit cards or electronic devices sensitive to magnetic fields. Therefore, it is important to exercise caution when using magnets.
A neodymium magnet in classes N52 and N50 is a powerful and strong magnetic product designed as a plate, featuring strong holding power and broad usability. Very good price, availability, durability and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable power, neodymium magnets have these key benefits:

  • Their power is maintained, and after approximately ten years, it drops only by ~1% (theoretically),
  • They are very resistant to demagnetization caused by external magnetic sources,
  • Because of the brilliant layer of nickel, the component looks visually appealing,
  • Magnetic induction on the surface of these magnets is notably high,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
  • Key role in advanced technical fields – they serve a purpose in HDDs, rotating machines, diagnostic apparatus along with sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them useful in small systems

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
  • Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
  • Safety concern related to magnet particles may arise, when consumed by mistake, which is important in the context of child safety. Moreover, tiny components from these devices might complicate medical imaging when ingested,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Highest magnetic holding forcewhat it depends on?

The given lifting capacity of the magnet means the maximum lifting force, assessed in a perfect environment, namely:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet depends on in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under parallel forces the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.

Handle Neodymium Magnets with Caution

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If you have a finger between or on the path of attracting magnets, there may be a serious cut or even a fracture.

Neodymium magnetic are delicate and can easily break as well as shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

 It is important to maintain neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Exercise caution!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98