MPL 15x3x6 / N38 - lamellar magnet
lamellar magnet
Catalog no 020122
GTIN/EAN: 5906301811282
length
15 mm [±0,1 mm]
Width
3 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
2.03 g
Magnetization Direction
↑ axial
Load capacity
1.90 kg / 18.68 N
Magnetic Induction
543.23 mT / 5432 Gs
Coating
[NiCuNi] Nickel
0.726 ZŁ with VAT / pcs + price for transport
0.590 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
alternatively let us know by means of
contact form
the contact section.
Weight as well as appearance of a magnet can be checked with our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical - MPL 15x3x6 / N38 - lamellar magnet
Specification / characteristics - MPL 15x3x6 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020122 |
| GTIN/EAN | 5906301811282 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 15 mm [±0,1 mm] |
| Width | 3 mm [±0,1 mm] |
| Height | 6 mm [±0,1 mm] |
| Weight | 2.03 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.90 kg / 18.68 N |
| Magnetic Induction ~ ? | 543.23 mT / 5432 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the magnet - data
These data are the result of a engineering calculation. Results are based on models for the material Nd2Fe14B. Real-world conditions may deviate from the simulation results. Use these data as a supplementary guide during assembly planning.
Table 1: Static pull force (force vs distance) - interaction chart
MPL 15x3x6 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5423 Gs
542.3 mT
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
low risk |
| 1 mm |
3221 Gs
322.1 mT
|
0.67 kg / 1.48 lbs
670.2 g / 6.6 N
|
low risk |
| 2 mm |
1942 Gs
194.2 mT
|
0.24 kg / 0.54 lbs
243.7 g / 2.4 N
|
low risk |
| 3 mm |
1274 Gs
127.4 mT
|
0.10 kg / 0.23 lbs
104.9 g / 1.0 N
|
low risk |
| 5 mm |
652 Gs
65.2 mT
|
0.03 kg / 0.06 lbs
27.5 g / 0.3 N
|
low risk |
| 10 mm |
195 Gs
19.5 mT
|
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
|
low risk |
| 15 mm |
81 Gs
8.1 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
low risk |
| 20 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
low risk |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Sliding hold (wall)
MPL 15x3x6 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.84 lbs
380.0 g / 3.7 N
|
| 1 mm | Stal (~0.2) |
0.13 kg / 0.30 lbs
134.0 g / 1.3 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MPL 15x3x6 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.57 kg / 1.26 lbs
570.0 g / 5.6 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.84 lbs
380.0 g / 3.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
Table 4: Steel thickness (substrate influence) - power losses
MPL 15x3x6 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 1 mm |
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
| 2 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 3 mm |
|
1.42 kg / 3.14 lbs
1425.0 g / 14.0 N
|
| 5 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 10 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 11 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 12 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
Table 5: Working in heat (material behavior) - thermal limit
MPL 15x3x6 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
OK |
| 40 °C | -2.2% |
1.86 kg / 4.10 lbs
1858.2 g / 18.2 N
|
OK |
| 60 °C | -4.4% |
1.82 kg / 4.00 lbs
1816.4 g / 17.8 N
|
OK |
| 80 °C | -6.6% |
1.77 kg / 3.91 lbs
1774.6 g / 17.4 N
|
|
| 100 °C | -28.8% |
1.35 kg / 2.98 lbs
1352.8 g / 13.3 N
|
Table 6: Two magnets (repulsion) - forces in the system
MPL 15x3x6 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.16 kg / 17.99 lbs
5 914 Gs
|
1.22 kg / 2.70 lbs
1224 g / 12.0 N
|
N/A |
| 1 mm |
4.96 kg / 10.94 lbs
8 460 Gs
|
0.74 kg / 1.64 lbs
745 g / 7.3 N
|
4.47 kg / 9.85 lbs
~0 Gs
|
| 2 mm |
2.88 kg / 6.34 lbs
6 441 Gs
|
0.43 kg / 0.95 lbs
432 g / 4.2 N
|
2.59 kg / 5.71 lbs
~0 Gs
|
| 3 mm |
1.70 kg / 3.75 lbs
4 950 Gs
|
0.25 kg / 0.56 lbs
255 g / 2.5 N
|
1.53 kg / 3.37 lbs
~0 Gs
|
| 5 mm |
0.67 kg / 1.48 lbs
3 116 Gs
|
0.10 kg / 0.22 lbs
101 g / 1.0 N
|
0.61 kg / 1.34 lbs
~0 Gs
|
| 10 mm |
0.12 kg / 0.26 lbs
1 304 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.02 lbs
391 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MPL 15x3x6 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 4.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 3.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.5 cm |
| Remote | 50 Gs (5.0 mT) | 2.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - collision effects
MPL 15x3x6 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
30.88 km/h
(8.58 m/s)
|
0.07 J | |
| 30 mm |
53.44 km/h
(14.84 m/s)
|
0.22 J | |
| 50 mm |
68.99 km/h
(19.16 m/s)
|
0.37 J | |
| 100 mm |
97.57 km/h
(27.10 m/s)
|
0.75 J |
Table 9: Surface protection spec
MPL 15x3x6 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 15x3x6 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 2 390 Mx | 23.9 µWb |
| Pc Coefficient | 0.79 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MPL 15x3x6 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.90 kg | Standard |
| Water (riverbed) |
2.18 kg
(+0.28 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical surface, the magnet retains only ~20% of its nominal pull.
2. Efficiency vs thickness
*Thin metal sheet (e.g. computer case) severely limits the holding force.
3. Thermal stability
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.79
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also deals
Pros and cons of rare earth magnets.
Strengths
- They virtually do not lose power, because even after ten years the performance loss is only ~1% (in laboratory conditions),
- They feature excellent resistance to magnetism drop as a result of opposing magnetic fields,
- The use of an refined layer of noble metals (nickel, gold, silver) causes the element to look better,
- Neodymium magnets achieve maximum magnetic induction on a their surface, which ensures high operational effectiveness,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Possibility of accurate shaping and optimizing to specific conditions,
- Huge importance in innovative solutions – they are commonly used in computer drives, drive modules, precision medical tools, and industrial machines.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in compact dimensions, which allows their use in compact constructions
Cons
- Brittleness is one of their disadvantages. Upon strong impact they can fracture. We advise keeping them in a strong case, which not only protects them against impacts but also raises their durability
- Neodymium magnets lose their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Magnets exposed to a humid environment can corrode. Therefore when using outdoors, we suggest using waterproof magnets made of rubber, plastic or other material resistant to moisture
- Due to limitations in creating nuts and complex shapes in magnets, we propose using cover - magnetic mount.
- Health risk to health – tiny shards of magnets are risky, in case of ingestion, which becomes key in the context of child health protection. Additionally, small elements of these devices are able to be problematic in diagnostics medical when they are in the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Highest magnetic holding force – what affects it?
- using a plate made of low-carbon steel, functioning as a ideal flux conductor
- possessing a thickness of min. 10 mm to ensure full flux closure
- characterized by even structure
- with direct contact (no coatings)
- under axial force vector (90-degree angle)
- in temp. approx. 20°C
What influences lifting capacity in practice
- Gap between surfaces – every millimeter of separation (caused e.g. by varnish or dirt) drastically reduces the pulling force, often by half at just 0.5 mm.
- Angle of force application – highest force is obtained only during perpendicular pulling. The force required to slide of the magnet along the surface is typically many times lower (approx. 1/5 of the lifting capacity).
- Element thickness – for full efficiency, the steel must be sufficiently thick. Paper-thin metal limits the attraction force (the magnet "punches through" it).
- Steel type – low-carbon steel gives the best results. Alloy steels reduce magnetic properties and holding force.
- Smoothness – full contact is possible only on smooth steel. Rough texture create air cushions, reducing force.
- Temperature influence – high temperature weakens magnetic field. Exceeding the limit temperature can permanently demagnetize the magnet.
Lifting capacity was determined with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. Additionally, even a small distance between the magnet’s surface and the plate decreases the load capacity.
Precautions when working with neodymium magnets
Risk of cracking
Despite the nickel coating, the material is delicate and cannot withstand shocks. Do not hit, as the magnet may crumble into hazardous fragments.
Life threat
Medical warning: Neodymium magnets can deactivate pacemakers and defibrillators. Do not approach if you have medical devices.
Compass and GPS
A strong magnetic field disrupts the functioning of magnetometers in smartphones and GPS navigation. Keep magnets near a smartphone to prevent damaging the sensors.
Heat sensitivity
Keep cool. NdFeB magnets are sensitive to temperature. If you need operation above 80°C, inquire about HT versions (H, SH, UH).
Mechanical processing
Fire hazard: Rare earth powder is explosive. Do not process magnets in home conditions as this risks ignition.
Electronic devices
Do not bring magnets close to a purse, laptop, or TV. The magnetic field can destroy these devices and wipe information from cards.
Safe operation
Exercise caution. Neodymium magnets act from a long distance and snap with massive power, often quicker than you can react.
Avoid contact if allergic
Allergy Notice: The nickel-copper-nickel coating consists of nickel. If an allergic reaction appears, immediately stop handling magnets and wear gloves.
Bodily injuries
Big blocks can break fingers in a fraction of a second. Do not place your hand betwixt two attracting surfaces.
Swallowing risk
These products are not suitable for play. Eating a few magnets can lead to them connecting inside the digestive tract, which constitutes a critical condition and requires immediate surgery.
