SM 25x375 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130363
GTIN: 5906301813118
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
375 mm
Weight
0.01 g
1131.60 ZŁ with VAT / pcs + price for transport
920.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Contact us by phone
+48 888 99 98 98
alternatively drop us a message through
form
through our site.
Strength and form of magnetic components can be estimated using our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
SM 25x375 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their exceptional field intensity, neodymium magnets offer the following advantages:
- They retain their attractive force for nearly ten years – the drop is just ~1% (according to analyses),
- They protect against demagnetization induced by ambient magnetic fields very well,
- In other words, due to the shiny nickel coating, the magnet obtains an professional appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
- With the option for fine forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Key role in modern technologies – they are utilized in hard drives, electric motors, clinical machines as well as other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and strengthens its overall resistance,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to wet conditions can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
- Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
- Safety concern related to magnet particles may arise, especially if swallowed, which is important in the health of young users. Moreover, minuscule fragments from these assemblies have the potential to complicate medical imaging after being swallowed,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Detachment force of the magnet in optimal conditions – what contributes to it?
The given pulling force of the magnet represents the maximum force, measured in a perfect environment, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- with vertical force applied
- at room temperature
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance {between} the magnet and the plate decreases the holding force.
Notes with Neodymium Magnets
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or in their path when they attract. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are delicate as well as can easily crack as well as get damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Be careful!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
