tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all "magnets" in our store are available for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase very strong magnet? Magnetic holders in solid and airtight steel enclosure are perfect for use in difficult weather conditions, including snow and rain check...

magnets with holders

Holders with magnets can be applied to enhance production, underwater discoveries, or finding space rocks from gold more information...

We promise to ship ordered magnets on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x375 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130363

GTIN: 5906301813118

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

375 mm

Weight

0.01 g

1 131.60 with VAT / pcs + price for transport

920.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
920.00 ZŁ
1 131.60 ZŁ
price from 3 pcs
874.00 ZŁ
1 075.02 ZŁ
price from 5 pcs
828.00 ZŁ
1 018.44 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 25x375 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x375 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130363
GTIN
5906301813118
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
375 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are embedded in a casing made of stainless steel mostly AISI304. In this way, it is possible to precisely remove ferromagnetic particles from different substances. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be collected. The thickness of the embedded magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic particles. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in food production to clear metallic contaminants, such as iron fragments or iron dust. Our rods are made from durable acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, often called cylindrical magnets, are employed in food production, metal separation as well as waste processing. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are built with a neodymium magnet placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Often it is believed that the stronger the magnet, the better. Nevertheless, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines are more compressed. Otherwise, when the magnet is thick, the force lines are longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, usually stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, AISI 316 steel exhibits the best resistance due to its exceptional corrosion resistance.
Magnetic rollers stand out for their specific arrangement of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms related to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended cleaning regularly, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out every two years. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • Their strength remains stable, and after around ten years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is among the best,
  • Thanks to the shiny finish and silver coating, they have an visually attractive appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Wide application in new technology industries – they find application in computer drives, electric drives, healthcare devices as well as technologically developed systems,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of plastic for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is significant in the context of child safety. Additionally, miniature parts from these magnets may hinder health screening if inside the body,
  • Due to expensive raw materials, their cost is relatively high,

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnetic are delicate and can easily break as well as get damaged.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets bounce and touch each other mutually within a radius of several to almost 10 cm from each other.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Exercise caution!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98