SM 25x375 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130363
GTIN: 5906301813118
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
375 mm
Weight
0.01 g
1131.60 ZŁ with VAT / pcs + price for transport
920.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Give us a call
+48 22 499 98 98
if you prefer drop us a message through
our online form
our website.
Specifications as well as form of magnetic components can be checked with our
power calculator.
Order by 14:00 and we’ll ship today!
SM 25x375 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:
- Their magnetic field is maintained, and after approximately 10 years, it drops only by ~1% (theoretically),
- They are highly resistant to demagnetization caused by external magnetic sources,
- Thanks to the glossy finish and silver coating, they have an aesthetic appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
- Key role in advanced technical fields – they serve a purpose in data storage devices, rotating machines, clinical machines as well as high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in compact constructions
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall robustness,
- They lose field intensity at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a damp environment. For outdoor use, we recommend using encapsulated magnets, such as those made of plastic,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
- Health risk due to small fragments may arise, if ingested accidentally, which is notable in the health of young users. Furthermore, small elements from these products might interfere with diagnostics after being swallowed,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Maximum lifting force for a neodymium magnet – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, assessed in ideal conditions, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with zero air gap
- under perpendicular detachment force
- under standard ambient temperature
Impact of factors on magnetic holding capacity in practice
Practical lifting force is determined by elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, however under parallel forces the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet and the plate decreases the holding force.
Safety Precautions
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnets are highly delicate, they easily fall apart as well as can crumble.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a severe pressure or even a fracture.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
It is essential to maintain neodymium magnets away from children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Warning!
So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.
