tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are available for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to buy very strong magnet? Magnet holders in airtight, solid steel enclosure are perfect for use in difficult, demanding climate conditions, including during snow and rain check...

magnets with holders

Holders with magnets can be used to enhance production processes, exploring underwater areas, or locating space rocks made of ore more...

Enjoy delivery of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x375 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130363

GTIN: 5906301813118

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

375 mm

Weight

0.01 g

1 131.60 with VAT / pcs + price for transport

920.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
920.00 ZŁ
1 131.60 ZŁ
price from 5 pcs
828.00 ZŁ
1 018.44 ZŁ

Want to talk magnets?

Contact us by phone +48 22 499 98 98 alternatively send us a note by means of our online form the contact form page.
Specifications as well as form of a magnet can be estimated using our magnetic mass calculator.

Same-day shipping for orders placed before 14:00.

SM 25x375 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x375 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130363
GTIN
5906301813118
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
375 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, placed in a construction made of stainless steel usually AISI304. Due to this, it is possible to efficiently remove ferromagnetic particles from other materials. A fundamental component of its operation is the repulsion of magnetic poles N and S, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food sector to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are made from durable acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, otherwise magnetic separators, are used in food production, metal separation as well as waste processing. They help in removing iron dust during the process of separating metals from other wastes.
Our magnetic rollers consist of neodymium magnets anchored in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the greater the magnet's power, the better. But, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be more compressed. On the other hand, in the case of a thicker magnet, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a saltwater contact, AISI 316 steel exhibits the best resistance due to its excellent corrosion resistance.
Magnetic bars stand out for their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from contaminants, avoiding high temperatures above 80 degrees, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Magnetic field measurements should be carried out every two years. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They have constant strength, and over around ten years their performance decreases symbolically – ~1% (in testing),
  • They show superior resistance to demagnetization from external magnetic fields,
  • By applying a reflective layer of silver, the element gains a modern look,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their usage potential,
  • Important function in advanced technical fields – they are used in HDDs, electric motors, clinical machines as well as other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
  • Health risk related to magnet particles may arise, in case of ingestion, which is crucial in the health of young users. Furthermore, small elements from these magnets may complicate medical imaging once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in the best circumstances, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Determinants of practical lifting force of a magnet

In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as 75%. In addition, even a small distance {between} the magnet’s surface and the plate reduces the holding force.

Precautions with Neodymium Magnets

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If have a finger between or on the path of attracting magnets, there may be a large cut or a fracture.

Neodymium magnetic are highly fragile, they easily fall apart and can become damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Caution!

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98