tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnets for searching F400 GOLD

Where to buy very strong magnet? Magnetic holders in airtight, solid steel enclosure are excellent for use in variable and difficult weather, including in the rain and snow see more...

magnetic holders

Magnetic holders can be applied to facilitate manufacturing, exploring underwater areas, or finding space rocks made of ore see...

Order always shipped if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x375 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130363

GTIN: 5906301813118

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

375 mm

Weight

0.01 g

1131.60 with VAT / pcs + price for transport

920.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
920.00 ZŁ
1131.60 ZŁ
price from 5 pcs
828.00 ZŁ
1018.44 ZŁ

Need advice?

Call us now +48 22 499 98 98 alternatively let us know via our online form our website.
Specifications and structure of magnets can be tested with our our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SM 25x375 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x375 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130363
GTIN
5906301813118
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
375 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are embedded in a casing made of stainless steel mostly AISI304. As a result, it is possible to effectively separate ferromagnetic particles from different substances. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be attracted. The thickness of the magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rods are built from durable acid-resistant steel, AISI 304, intended for use in food.
Magnetic rollers, otherwise magnetic separators, are employed in metal separation, food production as well as waste processing. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Often it is believed that the greater the magnet's power, the better. But, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. On the other hand, when the magnet is thick, the force lines will be longer and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, most often stainless steel is employed, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel exhibits the best resistance thanks to its exceptional corrosion resistance.
Magnetic rollers stand out for their specific arrangement of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Caution should be taken during use, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They retain their full power for nearly ten years – the loss is just ~1% (in theory),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a decorative gold surface provides a refined finish,
  • They have very high magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for customized forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Key role in new technology industries – they are utilized in hard drives, rotating machines, diagnostic apparatus along with high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which allows for use in small systems

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally increases its overall resistance,
  • They lose field intensity at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of plastic,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
  • Health risk related to magnet particles may arise, especially if swallowed, which is notable in the context of child safety. Moreover, tiny components from these products can interfere with diagnostics after being swallowed,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum lifting force for a neodymium magnet – what contributes to it?

The given strength of the magnet corresponds to the optimal strength, assessed under optimal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.

Handle with Care: Neodymium Magnets

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets will bounce and contact together within a distance of several to around 10 cm from each other.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

 It is important to maintain neodymium magnets away from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are especially fragile, resulting in shattering.

Neodymium magnets are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Safety precautions!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98