tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" on our website are in stock for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase very strong magnet? Holders with magnets in solid and airtight steel enclosure are ideally suited for use in difficult weather conditions, including during snow and rain see...

magnetic holders

Magnetic holders can be used to improve production processes, underwater exploration, or finding space rocks made of ore more information...

Order is always shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x400 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130365

GTIN: 5906301813392

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

400 mm

Weight

0.01 g

1 131.60 with VAT / pcs + price for transport

920.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
920.00 ZŁ
1 131.60 ZŁ
price from 2200 pcs
874.00 ZŁ
1 075.02 ZŁ
price from 4400 pcs
828.00 ZŁ
1 018.44 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 25x400 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x400 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130365
GTIN
5906301813392
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
400 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. Due to this, it is possible to precisely remove ferromagnetic elements from different substances. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic particles. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are used in the food sector to clear metallic contaminants, for example iron fragments or iron dust. Our rollers are made from acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, often called cylindrical magnets, find application in food production, metal separation as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet anchored in a tube made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the greater the magnet's power, the better. However, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are short. By contrast, when the magnet is thick, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is employed, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel exhibits the best resistance due to its exceptional anti-corrosion properties.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and lose their power. Testing of the rollers should be carried out once every 24 months. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time. After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Key role in the industry of new technologies – are utilized in hard drives, electric motors, medical apparatus and other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger arising from small pieces of magnets are risky, if swallowed, which is crucial in the context of children's health. It's also worth noting that tiny parts of these magnets can be problematic in medical diagnosis in case of swallowing.

Handle Neodymium Magnets with Caution

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are delicate and can easily crack as well as shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will crack or crumble with uncontrolled connecting to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98