tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. Practically all magnesy in our store are available for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy powerful magnet? Holders with magnets in airtight and durable enclosure are excellent for use in challenging climate conditions, including snow and rain see...

magnetic holders

Holders with magnets can be used to enhance production, exploring underwater areas, or finding space rocks made of ore more information...

Enjoy delivery of your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

SM 25x400 [2xM8] / N42 - magnetic roller

magnetic separator

catalog number 130365

GTIN: 5906301813392

no reviews

diameter Ø

25 mm [±0,1 mm]

height

400 mm [±0,1 mm]

max. temperature

≤ 80 °C

1131.60 PLN gross price (including VAT) / pcs +

920.00 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
920.00 PLN
1131.60 PLN
price from 3 pcs
874.00 PLN
1075.02 PLN
price from 5 pcs
828.00 PLN
1018.44 PLN

Want to talk about magnets?

Call us tel: +48 888 99 98 98 or contact us via form on the contact page. You can check the lifting capacity and the shape of neodymium magnet in our force calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 25x400 [2xM8] / N42

Characteristics: magnetic separator 25x400 [2xM8] / N42
Properties
Values
catalog number
130365
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
25 mm [±0,1 mm]
height
400 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
0.01 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N42
ilość gwintów
2x [M8] wewnętrzne
biegunowość
obwodowa - 15 nabiegunników
indukcja magnetyczna
~ 6 500 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N42

material characteristics N42
Properties
Values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
40-42
BH max MGOe
energy density [Min. - Max.]
318-334
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. In this way, it is possible to effectively segregate ferromagnetic elements from different substances. A fundamental component of its operation is the use of repulsion of magnetic poles N and S, which causes magnetic substances to be collected. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic particles. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are used in food production to clear metallic contaminants, for example iron fragments or iron dust. Our rods are built from acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, otherwise magnetic separators, are used in food production, metal separation as well as recycling. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers consist of a neodymium magnet embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the greater the magnet's power, the better. Nevertheless, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be more compressed. On the other hand, in the case of a thicker magnet, the force lines will be longer and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel is recommended due to its exceptional anti-corrosion properties.
Magnetic bars are characterized by their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. Disadvantages may include the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, it is advised to clean them regularly from contaminants, avoid extremal temperatures above 80 degrees, and to clean them regularly, avoiding temperatures up to 80°C. The rollers have an IP67 waterproof rating, so if they are not sealed, the magnets inside may rust and weaken. Magnetic field measurements are suggested to be conducted once every 24 months. Care should be taken as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it can wear out, which, in turn, can result in issues with the magnetic rod becoming unsealed and product contamination. The Roller operating range equals its diameter, fi25mm is approximately 25mm active range, while fi32 is about 40mm.

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time - after about 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Significant importance in advanced technologically fields – are used in HDD drives, electric motors, medical apparatus or other advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Potential hazard associated with microscopic parts of magnets pose a threat, if swallowed, which is particularly important in the context of child safety. Additionally, tiny parts of these magnets are able to hinder the diagnostic process in case of swallowing.

Handle with Care: Neodymium Magnets

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the situation of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnetic are incredibly fragile, they easily fall apart and can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98