tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. All "magnets" on our website are in stock for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for fishing F200 GOLD

Where to buy powerful magnet? Magnet holders in solid and airtight steel casing are excellent for use in challenging climate conditions, including during rain and snow read...

magnetic holders

Magnetic holders can be used to enhance production processes, exploring underwater areas, or finding space rocks from gold more information...

Shipping is shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x400 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130365

GTIN: 5906301813392

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

400 mm

Weight

0.01 g

1 131.60 with VAT / pcs + price for transport

920.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
920.00 ZŁ
1 131.60 ZŁ
price from 3 pcs
920.00 ZŁ
1 131.60 ZŁ
price from 5 pcs
920.00 ZŁ
1 131.60 ZŁ

Need advice?

Call us +48 22 499 98 98 if you prefer contact us through our online form the contact page.
Strength and form of a magnet can be analyzed using our modular calculator.

Same-day shipping for orders placed before 14:00.

SM 25x400 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x400 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130365
GTIN
5906301813392
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
400 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are welded in a casing made of stainless steel usually AISI304. Due to this, it is possible to efficiently separate ferromagnetic elements from the mixture. A key aspect of its operation is the use of repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to separate ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are built from acid-resistant steel, AISI 304, intended for contact with food.
Magnetic rollers, often called cylindrical magnets, find application in metal separation, food production as well as recycling. They help in removing iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet embedded in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Often it is believed that the greater the magnet's power, the more efficient it is. But, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are short. Otherwise, when the magnet is thick, the force lines will be longer and reach further.
For creating the casings of magnetic separators - rollers, most often stainless steel is used, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel is highly recommended due to its exceptional corrosion resistance.
Magnetic bars stand out for their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other devices that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve the need for regular cleaning, higher cost, and potential installation challenges.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from deposits, avoiding extreme temperatures up to 80°C, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Testing of the rollers is recommended be carried out every two years. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetism, neodymium magnets have these key benefits:

  • They have unchanged lifting capacity, and over nearly 10 years their performance decreases symbolically – ~1% (according to theory),
  • Their ability to resist magnetic interference from external fields is impressive,
  • By applying a reflective layer of silver, the element gains a sleek look,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for accurate shaping or adaptation to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Wide application in advanced technical fields – they are utilized in data storage devices, electromechanical systems, healthcare devices as well as other advanced devices,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall robustness,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment. For outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
  • Potential hazard linked to microscopic shards may arise, especially if swallowed, which is crucial in the health of young users. Additionally, small elements from these magnets can complicate medical imaging after being swallowed,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Exercise Caution with Neodymium Magnets

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will bounce and also clash together within a distance of several to around 10 cm from each other.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Magnets made of neodymium are particularly delicate, resulting in their breakage.

Neodymium magnets are fragile as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Safety rules!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98