SM 25x400 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130365
GTIN: 5906301813392
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
400 mm
Weight
0.01 g
1131.60 ZŁ with VAT / pcs + price for transport
920.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Contact us by phone
+48 22 499 98 98
or get in touch via
request form
through our site.
Weight as well as appearance of magnets can be reviewed with our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
SM 25x400 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent holding force, neodymium magnets have these key benefits:
- They do not lose their power nearly ten years – the decrease of strength is only ~1% (based on measurements),
- They protect against demagnetization induced by external electromagnetic environments remarkably well,
- Because of the brilliant layer of gold, the component looks high-end,
- They possess significant magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- With the option for customized forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Significant impact in advanced technical fields – they are used in computer drives, electric motors, clinical machines and sophisticated instruments,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally enhances its overall resistance,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a damp environment. If exposed to rain, we recommend using sealed magnets, such as those made of plastic,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is difficult,
- Safety concern due to small fragments may arise, especially if swallowed, which is important in the family environments. It should also be noted that tiny components from these devices may disrupt scanning when ingested,
- In cases of tight budgets, neodymium magnet cost may not be economically viable,
Magnetic strength at its maximum – what it depends on?
The given holding capacity of the magnet corresponds to the highest holding force, assessed in the best circumstances, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
What influences lifting capacity in practice
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate reduces the holding force.
Handle Neodymium Magnets with Caution
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnetic are highly fragile, they easily crack and can become damaged.
Magnets made of neodymium are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Keep neodymium magnets far from children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Caution!
So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.