tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. Practically all "magnets" in our store are available for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase strong magnet? Magnetic holders in airtight and durable enclosure are excellent for use in challenging climate conditions, including in the rain and snow check...

magnetic holders

Magnetic holders can be applied to facilitate production, underwater exploration, or locating meteorites made of metal see...

Enjoy shipping of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 2x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010055

GTIN: 5906301810544

5

Diameter Ø [±0,1 mm]

2 mm

Height [±0,1 mm]

4 mm

Weight

0.09 g

Magnetization Direction

↑ axial

Load capacity

0.44 kg / 4.31 N

Magnetic Induction

597.70 mT

Coating

[NiCuNi] nickel

0.18 with VAT / pcs + price for transport

0.15 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.15 ZŁ
0.18 ZŁ
price from 5000 pcs
0.13 ZŁ
0.16 ZŁ
price from 10000 pcs
0.13 ZŁ
0.16 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 2x4 / N38 - cylindrical magnet

Specification/characteristics MW 2x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010055
GTIN
5906301810544
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
2 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.09 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.44 kg / 4.31 N
Magnetic Induction ~ ?
597.70 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 2x4 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed ordinary ferrite magnets. Because of their strength, they are often used in products that need powerful holding. The standard temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet designated MW 2x4 / N38 and a magnetic strength 0.44 kg weighs only 0.09 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of silver to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the website for the latest information and offers, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are practical in various applications, they can also constitute certain dangers. Because of their significant magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin as well as other materials, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and thermal processing. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as epoxy, to preserve them from external factors and extend their lifespan. Temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A neodymium magnet of class N50 and N52 is a strong and powerful metallic component designed as a cylinder, providing strong holding power and universal applicability. Competitive price, fast shipping, durability and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable pulling force, neodymium magnets offer the following advantages:

  • Their power remains stable, and after around 10 years, it drops only by ~1% (theoretically),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Thanks to the polished finish and gold coating, they have an visually attractive appearance,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for accurate shaping and adaptation to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Significant impact in modern technologies – they are used in hard drives, rotating machines, healthcare devices or even other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and enhances its overall robustness,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment. For outdoor use, we recommend using sealed magnets, such as those made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, if ingested accidentally, which is important in the context of child safety. Moreover, tiny components from these assemblies might interfere with diagnostics if inside the body,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Exercise Caution with Neodymium Magnets

  Neodymium magnets should not be around youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Magnets made of neodymium are incredibly delicate, they easily fall apart as well as can crumble.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Caution!

To show why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98