MW 2x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010055
GTIN/EAN: 5906301810544
Diameter Ø
2 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.09 g
Magnetization Direction
↑ axial
Load capacity
0.09 kg / 0.86 N
Magnetic Induction
597.70 mT / 5977 Gs
Coating
[NiCuNi] Nickel
0.209 ZŁ with VAT / pcs + price for transport
0.1700 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
or let us know using
form
the contact section.
Specifications and shape of magnetic components can be reviewed using our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical - MW 2x4 / N38 - cylindrical magnet
Specification / characteristics - MW 2x4 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010055 |
| GTIN/EAN | 5906301810544 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 2 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 0.09 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.09 kg / 0.86 N |
| Magnetic Induction ~ ? | 597.70 mT / 5977 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the product - data
The following values constitute the outcome of a engineering simulation. Results are based on models for the class Nd2Fe14B. Operational conditions might slightly differ from theoretical values. Treat these calculations as a preliminary roadmap during assembly planning.
Table 1: Static force (pull vs gap) - characteristics
MW 2x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5954 Gs
595.4 mT
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
safe |
| 1 mm |
1696 Gs
169.6 mT
|
0.01 kg / 0.02 lbs
7.3 g / 0.1 N
|
safe |
| 2 mm |
570 Gs
57.0 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
safe |
| 3 mm |
256 Gs
25.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
safe |
| 5 mm |
82 Gs
8.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 10 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 15 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 20 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Slippage load (wall)
MW 2x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 1 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MW 2x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.03 kg / 0.06 lbs
27.0 g / 0.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.01 kg / 0.02 lbs
9.0 g / 0.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.05 kg / 0.10 lbs
45.0 g / 0.4 N
|
Table 4: Material efficiency (saturation) - power losses
MW 2x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.01 kg / 0.02 lbs
9.0 g / 0.1 N
|
| 1 mm |
|
0.02 kg / 0.05 lbs
22.5 g / 0.2 N
|
| 2 mm |
|
0.05 kg / 0.10 lbs
45.0 g / 0.4 N
|
| 3 mm |
|
0.07 kg / 0.15 lbs
67.5 g / 0.7 N
|
| 5 mm |
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 10 mm |
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 11 mm |
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 12 mm |
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
Table 5: Thermal stability (material behavior) - power drop
MW 2x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
OK |
| 40 °C | -2.2% |
0.09 kg / 0.19 lbs
88.0 g / 0.9 N
|
OK |
| 60 °C | -4.4% |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
OK |
| 80 °C | -6.6% |
0.08 kg / 0.19 lbs
84.1 g / 0.8 N
|
|
| 100 °C | -28.8% |
0.06 kg / 0.14 lbs
64.1 g / 0.6 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MW 2x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.69 kg / 1.51 lbs
6 090 Gs
|
0.10 kg / 0.23 lbs
103 g / 1.0 N
|
N/A |
| 1 mm |
0.21 kg / 0.46 lbs
6 559 Gs
|
0.03 kg / 0.07 lbs
31 g / 0.3 N
|
0.19 kg / 0.41 lbs
~0 Gs
|
| 2 mm |
0.06 kg / 0.12 lbs
3 391 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 3 mm |
0.02 kg / 0.04 lbs
1 883 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 5 mm |
0.00 kg / 0.01 lbs
743 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 lbs
165 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MW 2x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 1.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 1.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.0 cm |
| Remote | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Collisions (cracking risk) - collision effects
MW 2x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
31.89 km/h
(8.86 m/s)
|
0.00 J | |
| 30 mm |
55.24 km/h
(15.34 m/s)
|
0.01 J | |
| 50 mm |
71.31 km/h
(19.81 m/s)
|
0.02 J | |
| 100 mm |
100.85 km/h
(28.01 m/s)
|
0.04 J |
Table 9: Surface protection spec
MW 2x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 2x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 209 Mx | 2.1 µWb |
| Pc Coefficient | 1.21 | High (Stable) |
Table 11: Physics of underwater searching
MW 2x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.09 kg | Standard |
| Water (riverbed) |
0.10 kg
(+0.01 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical wall, the magnet holds merely approx. 20-30% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. 0.5mm PC case) drastically reduces the holding force.
3. Temperature resistance
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.21
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also proposals
Advantages as well as disadvantages of neodymium magnets.
Strengths
- They retain attractive force for almost 10 years – the drop is just ~1% (based on simulations),
- They maintain their magnetic properties even under strong external field,
- The use of an shiny coating of noble metals (nickel, gold, silver) causes the element to have aesthetics,
- The surface of neodymium magnets generates a concentrated magnetic field – this is one of their assets,
- Thanks to resistance to high temperature, they are capable of working (depending on the form) even at temperatures up to 230°C and higher...
- Thanks to freedom in constructing and the capacity to adapt to specific needs,
- Versatile presence in high-tech industry – they are utilized in mass storage devices, electric motors, precision medical tools, as well as modern systems.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Cons
- Susceptibility to cracking is one of their disadvantages. Upon strong impact they can break. We recommend keeping them in a special holder, which not only protects them against impacts but also raises their durability
- We warn that neodymium magnets can reduce their power at high temperatures. To prevent this, we suggest our specialized [AH] magnets, which work effectively even at 230°C.
- When exposed to humidity, magnets start to rust. To use them in conditions outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation and corrosion.
- We recommend casing - magnetic holder, due to difficulties in producing nuts inside the magnet and complicated shapes.
- Health risk related to microscopic parts of magnets are risky, if swallowed, which becomes key in the context of child safety. Furthermore, small components of these products are able to complicate diagnosis medical when they are in the body.
- Higher cost of purchase is a significant factor to consider compared to ceramic magnets, especially in budget applications
Holding force characteristics
Maximum lifting force for a neodymium magnet – what it depends on?
- using a sheet made of high-permeability steel, functioning as a magnetic yoke
- whose thickness reaches at least 10 mm
- characterized by smoothness
- with direct contact (without coatings)
- under perpendicular application of breakaway force (90-degree angle)
- at room temperature
Magnet lifting force in use – key factors
- Space between surfaces – even a fraction of a millimeter of separation (caused e.g. by varnish or dirt) diminishes the pulling force, often by half at just 0.5 mm.
- Angle of force application – maximum parameter is obtained only during pulling at a 90° angle. The force required to slide of the magnet along the plate is typically many times smaller (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Magnetic flux passes through the material instead of generating force.
- Steel type – mild steel attracts best. Higher carbon content decrease magnetic properties and lifting capacity.
- Surface finish – full contact is possible only on smooth steel. Any scratches and bumps create air cushions, reducing force.
- Temperature influence – high temperature weakens magnetic field. Too high temperature can permanently demagnetize the magnet.
Lifting capacity was assessed by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap between the magnet’s surface and the plate lowers the holding force.
Warnings
Precision electronics
A powerful magnetic field disrupts the functioning of magnetometers in phones and navigation systems. Keep magnets close to a smartphone to avoid damaging the sensors.
Allergic reactions
Certain individuals experience a contact allergy to Ni, which is the standard coating for NdFeB magnets. Prolonged contact might lead to dermatitis. We strongly advise wear safety gloves.
Implant safety
Warning for patients: Powerful magnets affect medical devices. Maintain at least 30 cm distance or request help to work with the magnets.
Protective goggles
Beware of splinters. Magnets can fracture upon violent connection, ejecting shards into the air. Eye protection is mandatory.
Bodily injuries
Danger of trauma: The pulling power is so immense that it can result in hematomas, crushing, and even bone fractures. Use thick gloves.
Product not for children
NdFeB magnets are not toys. Swallowing a few magnets may result in them attracting across intestines, which poses a critical condition and requires urgent medical intervention.
Cards and drives
Device Safety: Neodymium magnets can damage payment cards and delicate electronics (pacemakers, hearing aids, timepieces).
Maximum temperature
Regular neodymium magnets (grade N) undergo demagnetization when the temperature goes above 80°C. The loss of strength is permanent.
Immense force
Be careful. Neodymium magnets act from a distance and snap with massive power, often faster than you can move away.
Machining danger
Mechanical processing of neodymium magnets carries a risk of fire risk. Neodymium dust oxidizes rapidly with oxygen and is difficult to extinguish.
