tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" on our website are in stock for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight and durable steel casing are excellent for use in challenging weather, including during snow and rain more information...

magnets with holders

Holders with magnets can be applied to facilitate production, exploring underwater areas, or locating meteors from gold check...

We promise to ship your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 2x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010055

GTIN: 5906301810544

5

Diameter Ø [±0,1 mm]

2 mm

Height [±0,1 mm]

4 mm

Weight

0.09 g

Magnetization Direction

↑ axial

Load capacity

0.44 kg / 4.31 N

Magnetic Induction

597.70 mT

Coating

[NiCuNi] nickel

0.21 with VAT / pcs + price for transport

0.17 ZŁ net + 23% VAT / pcs

0.15 ZŁ net was the lowest price in the last 30 days

bulk discounts:

Need more?

price from 1 pcs
0.17 ZŁ
0.21 ZŁ
price from 5000 pcs
0.15 ZŁ
0.18 ZŁ
price from 10000 pcs
0.14 ZŁ
0.17 ZŁ

Looking for a better price?

Call us now +48 22 499 98 98 if you prefer drop us a message via request form the contact page.
Weight as well as structure of a magnet can be calculated using our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

MW 2x4 / N38 - cylindrical magnet

Specification/characteristics MW 2x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010055
GTIN
5906301810544
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
2 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.09 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.44 kg / 4.31 N
Magnetic Induction ~ ?
597.70 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 2x4 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed ordinary ferrite magnets. Thanks to their power, they are often used in products that need strong adhesion. The standard temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet with the designation MW 2x4 / N38 and a magnetic lifting capacity of 0.44 kg weighs only 0.09 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information and promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are useful in many applications, they can also pose certain risk. Due to their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin and other materials, especially hands. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then shaping and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as gold, to shield them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
A neodymium magnet of class N52 and N50 is a strong and powerful metallic component with the shape of a cylinder, that provides high force and universal application. Good price, 24h delivery, durability and broad range of uses.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They retain their full power for around ten years – the drop is just ~1% (in theory),
  • They remain magnetized despite exposure to strong external fields,
  • The use of a decorative gold surface provides a eye-catching finish,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • With the option for fine forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Key role in cutting-edge sectors – they serve a purpose in hard drives, rotating machines, medical equipment or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which allows for use in compact constructions

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture while also strengthens its overall resistance,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
  • Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
  • Possible threat due to small fragments may arise, if ingested accidentally, which is notable in the protection of children. Additionally, miniature parts from these devices may hinder health screening if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, calculated in the best circumstances, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • at room temperature

Impact of factors on magnetic holding capacity in practice

In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.

Handle Neodymium Magnets Carefully

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets jump and clash mutually within a radius of several to around 10 cm from each other.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnetic are known for being fragile, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

 Keep neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98