MW 2x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010055
GTIN/EAN: 5906301810544
Diameter Ø
2 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.09 g
Magnetization Direction
↑ axial
Load capacity
0.09 kg / 0.86 N
Magnetic Induction
597.70 mT / 5977 Gs
Coating
[NiCuNi] Nickel
0.209 ZŁ with VAT / pcs + price for transport
0.1700 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure what to buy?
Call us
+48 22 499 98 98
or get in touch via
inquiry form
through our site.
Force along with form of neodymium magnets can be verified on our
power calculator.
Order by 14:00 and we’ll ship today!
MW 2x4 / N38 - cylindrical magnet
Specification / characteristics MW 2x4 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010055 |
| GTIN/EAN | 5906301810544 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 2 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 0.09 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.09 kg / 0.86 N |
| Magnetic Induction ~ ? | 597.70 mT / 5977 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the assembly - report
Presented values are the direct effect of a physical analysis. Values were calculated on models for the material Nd2Fe14B. Actual parameters might slightly deviate from the simulation results. Use these data as a reference point for designers.
MW 2x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg) | Risk Status |
|---|---|---|---|
| 0 mm |
5954 Gs
595.4 mT
|
0.09 kg / 90.0 g
0.9 N
|
safe |
| 1 mm |
1696 Gs
169.6 mT
|
0.01 kg / 7.3 g
0.1 N
|
safe |
| 2 mm |
570 Gs
57.0 mT
|
0.00 kg / 0.8 g
0.0 N
|
safe |
| 3 mm |
256 Gs
25.6 mT
|
0.00 kg / 0.2 g
0.0 N
|
safe |
| 5 mm |
82 Gs
8.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 10 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 15 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 20 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
MW 2x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 1 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 2x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.03 kg / 27.0 g
0.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.02 kg / 18.0 g
0.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.01 kg / 9.0 g
0.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.05 kg / 45.0 g
0.4 N
|
MW 2x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg) |
|---|---|---|
| 0.5 mm |
|
0.01 kg / 9.0 g
0.1 N
|
| 1 mm |
|
0.02 kg / 22.5 g
0.2 N
|
| 2 mm |
|
0.05 kg / 45.0 g
0.4 N
|
| 5 mm |
|
0.09 kg / 90.0 g
0.9 N
|
| 10 mm |
|
0.09 kg / 90.0 g
0.9 N
|
MW 2x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.09 kg / 90.0 g
0.9 N
|
OK |
| 40 °C | -2.2% |
0.09 kg / 88.0 g
0.9 N
|
OK |
| 60 °C | -4.4% |
0.09 kg / 86.0 g
0.8 N
|
OK |
| 80 °C | -6.6% |
0.08 kg / 84.1 g
0.8 N
|
|
| 100 °C | -28.8% |
0.06 kg / 64.1 g
0.6 N
|
MW 2x4 / N38
| Gap (mm) | Attraction (kg) (N-S) | Repulsion (kg) (N-N) |
|---|---|---|
| 0 mm |
0.69 kg / 687 g
6.7 N
6 090 Gs
|
N/A |
| 1 mm |
0.21 kg / 208 g
2.0 N
6 559 Gs
|
0.19 kg / 187 g
1.8 N
~0 Gs
|
| 2 mm |
0.06 kg / 56 g
0.5 N
3 391 Gs
|
0.05 kg / 50 g
0.5 N
~0 Gs
|
| 3 mm |
0.02 kg / 17 g
0.2 N
1 883 Gs
|
0.02 kg / 15 g
0.2 N
~0 Gs
|
| 5 mm |
0.00 kg / 3 g
0.0 N
743 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 10 mm |
0.00 kg / 0 g
0.0 N
165 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
30 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
3 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 2x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 1.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 1.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.0 cm |
| Remote | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
MW 2x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
31.89 km/h
(8.86 m/s)
|
0.00 J | |
| 30 mm |
55.24 km/h
(15.34 m/s)
|
0.01 J | |
| 50 mm |
71.31 km/h
(19.81 m/s)
|
0.02 J | |
| 100 mm |
100.85 km/h
(28.01 m/s)
|
0.04 J |
MW 2x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
MW 2x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 209 Mx | 2.1 µWb |
| Pc Coefficient | 1.21 | High (Stable) |
MW 2x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.09 kg | Standard |
| Water (riverbed) |
0.10 kg
(+0.01 kg Buoyancy gain)
|
+14.5% |
1. Shear force
*Note: On a vertical wall, the magnet holds just a fraction of its perpendicular strength.
2. Plate thickness effect
*Thin metal sheet (e.g. 0.5mm PC case) significantly weakens the holding force.
3. Heat tolerance
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.21
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also products
Strengths and weaknesses of rare earth magnets.
Benefits
- They retain attractive force for nearly 10 years – the drop is just ~1% (according to analyses),
- Magnets effectively resist against loss of magnetization caused by ambient magnetic noise,
- A magnet with a shiny nickel surface looks better,
- Magnets possess huge magnetic induction on the active area,
- Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
- Thanks to modularity in constructing and the capacity to adapt to specific needs,
- Universal use in electronics industry – they serve a role in computer drives, drive modules, precision medical tools, also technologically advanced constructions.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Disadvantages
- They are fragile upon heavy impacts. To avoid cracks, it is worth protecting magnets in special housings. Such protection not only shields the magnet but also increases its resistance to damage
- We warn that neodymium magnets can reduce their strength at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
- We recommend cover - magnetic mechanism, due to difficulties in realizing threads inside the magnet and complicated forms.
- Potential hazard to health – tiny shards of magnets are risky, in case of ingestion, which becomes key in the context of child safety. It is also worth noting that tiny parts of these products can complicate diagnosis medical when they are in the body.
- With budget limitations the cost of neodymium magnets is a challenge,
Pull force analysis
Highest magnetic holding force – what contributes to it?
- with the contact of a yoke made of low-carbon steel, guaranteeing full magnetic saturation
- with a thickness minimum 10 mm
- with a plane free of scratches
- with direct contact (without coatings)
- for force acting at a right angle (pull-off, not shear)
- in stable room temperature
Practical aspects of lifting capacity – factors
- Distance (betwixt the magnet and the plate), because even a microscopic clearance (e.g. 0.5 mm) results in a drastic drop in force by up to 50% (this also applies to paint, corrosion or debris).
- Angle of force application – highest force is available only during perpendicular pulling. The shear force of the magnet along the surface is usually several times smaller (approx. 1/5 of the lifting capacity).
- Element thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet restricts the lifting capacity (the magnet "punches through" it).
- Steel type – mild steel gives the best results. Higher carbon content reduce magnetic permeability and lifting capacity.
- Smoothness – ideal contact is obtained only on polished steel. Any scratches and bumps reduce the real contact area, reducing force.
- Thermal environment – temperature increase results in weakening of force. Check the maximum operating temperature for a given model.
Lifting capacity was determined with the use of a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a minimal clearance between the magnet’s surface and the plate reduces the holding force.
Allergic reactions
It is widely known that the nickel plating (standard magnet coating) is a strong allergen. If your skin reacts to metals, prevent touching magnets with bare hands and opt for encased magnets.
Heat warning
Control the heat. Heating the magnet above 80 degrees Celsius will destroy its magnetic structure and pulling force.
Risk of cracking
NdFeB magnets are ceramic materials, meaning they are prone to chipping. Impact of two magnets will cause them breaking into shards.
Danger to the youngest
Neodymium magnets are not intended for children. Accidental ingestion of several magnets may result in them pinching intestinal walls, which poses a critical condition and necessitates urgent medical intervention.
Mechanical processing
Drilling and cutting of neodymium magnets carries a risk of fire hazard. Magnetic powder reacts violently with oxygen and is hard to extinguish.
Magnetic media
Do not bring magnets near a purse, computer, or TV. The magnetism can irreversibly ruin these devices and wipe information from cards.
Keep away from electronics
A powerful magnetic field negatively affects the operation of magnetometers in phones and navigation systems. Do not bring magnets near a device to avoid breaking the sensors.
Medical interference
Medical warning: Strong magnets can turn off heart devices and defibrillators. Stay away if you have electronic implants.
Conscious usage
Handle magnets with awareness. Their immense force can shock even professionals. Be vigilant and do not underestimate their power.
Finger safety
Protect your hands. Two large magnets will join immediately with a force of massive weight, crushing everything in their path. Exercise extreme caution!
