MW 2x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010055
GTIN: 5906301810544
Diameter Ø [±0,1 mm]
2 mm
Height [±0,1 mm]
4 mm
Weight
0.09 g
Magnetization Direction
↑ axial
Load capacity
0.44 kg / 4.31 N
Magnetic Induction
597.70 mT
Coating
[NiCuNi] nickel
0.209 ZŁ with VAT / pcs + price for transport
0.1700 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Give us a call
+48 888 99 98 98
or drop us a message by means of
contact form
the contact form page.
Weight and form of a magnet can be verified with our
modular calculator.
Order by 14:00 and we’ll ship today!
MW 2x4 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as nickel, to protect them from external factors and prolong their durability. Temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their consistent magnetic energy, neodymium magnets have these key benefits:
- They have stable power, and over more than 10 years their attraction force decreases symbolically – ~1% (in testing),
- They are highly resistant to demagnetization caused by external field interference,
- By applying a shiny layer of silver, the element gains a sleek look,
- They have extremely strong magnetic induction on the surface of the magnet,
- Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- The ability for custom shaping as well as customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Wide application in new technology industries – they are used in data storage devices, electric motors, diagnostic apparatus or even sophisticated instruments,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and additionally enhances its overall strength,
- They lose magnetic force at high temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of synthetic coating for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
- Potential hazard related to magnet particles may arise, when consumed by mistake, which is notable in the protection of children. Furthermore, tiny components from these assemblies may complicate medical imaging if inside the body,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Optimal lifting capacity of a neodymium magnet – what affects it?
The given pulling force of the magnet represents the maximum force, assessed in the best circumstances, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- with vertical force applied
- under standard ambient temperature
Practical aspects of lifting capacity – factors
In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, however under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet and the plate reduces the holding force.
Precautions
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnetic are noted for being fragile, which can cause them to become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets will crack or alternatively crumble with careless connecting to each other. You can't approach them to each other. At a distance less than 10 cm you should have them extremely firmly.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Exercise caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
