e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. All magnesy neodymowe in our store are in stock for immediate purchase (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for searching F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in solid and airtight steel enclosure are ideally suited for use in difficult weather, including during rain and snow see more...

magnets with holders

Magnetic holders can be applied to facilitate production, underwater discoveries, or finding meteorites made of ore check...

Enjoy delivery of your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships tomorrow

MW 2x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010055

GTIN: 5906301810544

5

Diameter Ø [±0,1 mm]

2 mm

Height [±0,1 mm]

4 mm

Weight

0.09 g

Magnetization Direction

↑ axial

Load capacity

0.44 kg / 4.31 N

Magnetic Induction

597.70 mT

Coating

[NiCuNi] nickel

0.209 with VAT / pcs + price for transport

0.1700 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.1700 ZŁ
0.209 ZŁ
price from 5000 pcs
0.1496 ZŁ
0.1840 ZŁ
price from 10000 pcs
0.1445 ZŁ
0.1777 ZŁ

Need help making a decision?

Contact us by phone +48 888 99 98 98 otherwise contact us through inquiry form through our site.
Strength along with form of neodymium magnets can be calculated with our magnetic mass calculator.

Same-day processing for orders placed before 14:00.

MW 2x4 / N38 - cylindrical magnet

Specification/characteristics MW 2x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010055
GTIN
5906301810544
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
2 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.09 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.44 kg / 4.31 N
Magnetic Induction ~ ?
597.70 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Our cylinder magnets are made of high-performance rare earth material. As a result, they offer huge pull force while maintaining a small size. Model MW 2x4 / N38 has a pull force of approx. 0.44 kg. Their symmetrical shape makes them perfect for installing in sockets, electric motors and magnetic separators. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
The best and safest method is gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Use strong epoxy resins, which do not react with the nickel coating. Do not hit the magnets, as neodymium is a ceramic sinter and is prone to chipping upon impact.
The 'N' number indicates the maximum strength of the material. Larger numbers indicate a stronger magnetic field for the same size. N38 is the most common choice, which provides good performance at a reasonable price. For demanding applications, we recommend grade N52, which is the strongest commercially available sinter.
We use a protective plating of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects against air humidity. This is not a hermetic barrier. In outdoor or wet conditions, the coating may be damaged, leading to corrosion and loss of power. For such tasks, we recommend hermetic sealing or ordering a special version.
Cylindrical magnets are a key component of many modern machines. They are used in generators and wind turbines and in magnetic separators for cleaning bulk products. Additionally, due to their precise dimensions, they are ideal for measuring systems and sensors.
These magnets retain their properties up to 80 degrees Celsius. Exceeding this limit risks permanent loss of power. If you need resistance to higher temperatures (e.g. 120°C, 150°C, 200°C), ask about high-temperature versions (H, SH, UH). It is worth knowing that neodymium magnets do not tolerate thermal shock well.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetism, neodymium magnets have these key benefits:

  • They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Thanks to the glossy finish and nickel coating, they have an aesthetic appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
  • Key role in modern technologies – they are utilized in data storage devices, rotating machines, healthcare devices or even other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time strengthens its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment. If exposed to rain, we recommend using waterproof magnets, such as those made of plastic,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Health risk linked to microscopic shards may arise, when consumed by mistake, which is important in the family environments. It should also be noted that small elements from these magnets can disrupt scanning if inside the body,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Highest magnetic holding forcewhat it depends on?

The given strength of the magnet represents the optimal strength, calculated in ideal conditions, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Additionally, even a slight gap {between} the magnet and the plate decreases the load capacity.

Safety Precautions

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a severe pressure or even a fracture.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Never bring neodymium magnets close to a phone and GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

 Keep neodymium magnets far from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Magnets made of neodymium are noted for being fragile, which can cause them to become damaged.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Be careful!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98