MW 2x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010055
GTIN: 5906301810544
Diameter Ø [±0,1 mm]
2 mm
Height [±0,1 mm]
4 mm
Weight
0.09 g
Magnetization Direction
↑ axial
Load capacity
0.44 kg / 4.31 N
Magnetic Induction
597.70 mT
Coating
[NiCuNi] nickel
0.209 ZŁ with VAT / pcs + price for transport
0.1700 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Contact us by phone
+48 22 499 98 98
alternatively let us know by means of
inquiry form
through our site.
Strength along with structure of magnets can be estimated on our
our magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
MW 2x4 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:
- They do not lose their even over around 10 years – the decrease of strength is only ~1% (based on measurements),
- They show strong resistance to demagnetization from external field exposure,
- The use of a decorative nickel surface provides a smooth finish,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- The ability for custom shaping and customization to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
- Important function in cutting-edge sectors – they find application in computer drives, electric motors, medical equipment and sophisticated instruments,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall strength,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
- Safety concern from tiny pieces may arise, when consumed by mistake, which is notable in the health of young users. It should also be noted that minuscule fragments from these devices might hinder health screening when ingested,
- Due to the price of neodymium, their cost is above average,
Best holding force of the magnet in ideal parameters – what affects it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in a perfect environment, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a smooth surface
- with zero air gap
- with vertical force applied
- under standard ambient temperature
Determinants of practical lifting force of a magnet
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined with the use of a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under shearing force the load capacity is reduced by as much as 75%. In addition, even a small distance {between} the magnet and the plate lowers the lifting capacity.
Be Cautious with Neodymium Magnets
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnetic are fragile as well as can easily crack and get damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Keep neodymium magnets away from youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Magnets will crack or crumble with uncontrolled joining to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Safety precautions!
In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
