tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. All "magnets" on our website are available for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy strong neodymium magnet? Magnet holders in airtight, solid steel enclosure are excellent for use in variable and difficult climate conditions, including during snow and rain more information...

magnetic holders

Magnetic holders can be applied to improve production, exploring underwater areas, or searching for space rocks from gold more...

Enjoy delivery of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 20x10x5 / N38 - lamellar magnet

lamellar magnet

Catalog no 020128

GTIN: 5906301811343

5

length [±0,1 mm]

20 mm

Width [±0,1 mm]

10 mm

Height [±0,1 mm]

5 mm

Weight

7.5 g

Magnetization Direction

↑ axial

Load capacity

5.58 kg / 54.72 N

Magnetic Induction

349.47 mT

Coating

[NiCuNi] nickel

4.45 with VAT / pcs + price for transport

3.62 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.62 ZŁ
4.45 ZŁ
price from 166 pcs
3.40 ZŁ
4.19 ZŁ
price from 608 pcs
3.19 ZŁ
3.92 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 20x10x5 / N38 - lamellar magnet

Specification/characteristics MPL 20x10x5 / N38 - lamellar magnet
properties
values
Cat. no.
020128
GTIN
5906301811343
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
20 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
7.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5.58 kg / 54.72 N
Magnetic Induction ~ ?
349.47 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets min. MPL 20x10x5 / N38 are magnets made from neodymium in a rectangular form. They are appreciated for their exceptionally potent magnetic properties, which are much stronger than ordinary ferrite magnets.
Due to their strength, flat magnets are frequently applied in structures that need exceptional adhesion.
Typical temperature resistance of these magnets is 80 °C, but depending on the dimensions, this value grows.
Moreover, flat magnets commonly have special coatings applied to their surfaces, such as nickel, gold, or chrome, to increase their corrosion resistance.
The magnet labeled MPL 20x10x5 / N38 i.e. a magnetic force 5.58 kg with a weight of a mere 7.5 grams, making it the perfect choice for projects needing a flat magnet.
Neodymium flat magnets present a range of advantages compared to other magnet shapes, which cause them being an ideal choice for various uses:
Contact surface: Thanks to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often applied in many devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is important for their operation.
Mounting: This form's flat shape makes it easier mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers greater flexibility in placing them in structures, which is more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, minimizing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet is dependent on the given use and requirements. In some cases, other shapes, like cylindrical or spherical, may be a better choice.
Attracted by magnets are ferromagnetic materials, such as iron elements, objects containing nickel, cobalt or alloys of metals with magnetic properties. Moreover, magnets may lesser affect some other metals, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of these objects creates attractive forces, which affect objects made of iron or other magnetic materials.

Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Similar poles, e.g. two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are often used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the materials used.
Not all materials react to magnets, and examples of such substances are plastic, glass items, wooden materials and most gemstones. Moreover, magnets do not affect certain metals, such as copper, aluminum, items made of gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to exercise caution when using magnets.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field extremely well,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in many variants of shapes and sizes, which enhances their versatility in applications.
  • Key role in modern technologies – find application in hard drives, electric drive mechanisms, medical equipment or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard to health from tiny fragments of magnets are risky, in case of ingestion, which is crucial in the aspect of protecting young children. Additionally, small elements of these products can be problematic in medical diagnosis when they are in the body.

Caution with Neodymium Magnets

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

 Keep neodymium magnets far from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets jump and also touch each other mutually within a distance of several to around 10 cm from each other.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Magnets made of neodymium are particularly delicate, resulting in shattering.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Safety rules!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98