MPL 20x10x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020128
GTIN/EAN: 5906301811343
length
20 mm [±0,1 mm]
Width
10 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
7.5 g
Magnetization Direction
↑ axial
Load capacity
6.15 kg / 60.31 N
Magnetic Induction
349.47 mT / 3495 Gs
Coating
[NiCuNi] Nickel
4.54 ZŁ with VAT / pcs + price for transport
3.69 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
or send us a note through
request form
the contact page.
Weight along with shape of a neodymium magnet can be analyzed with our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
Physical properties - MPL 20x10x5 / N38 - lamellar magnet
Specification / characteristics - MPL 20x10x5 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020128 |
| GTIN/EAN | 5906301811343 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 20 mm [±0,1 mm] |
| Width | 10 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 7.5 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 6.15 kg / 60.31 N |
| Magnetic Induction ~ ? | 349.47 mT / 3495 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the assembly - report
The following values are the outcome of a physical simulation. Results rely on models for the class Nd2Fe14B. Operational conditions might slightly deviate from the simulation results. Please consider these calculations as a reference point during assembly planning.
Table 1: Static force (force vs distance) - characteristics
MPL 20x10x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3493 Gs
349.3 mT
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
strong |
| 1 mm |
3035 Gs
303.5 mT
|
4.64 kg / 10.23 lbs
4641.8 g / 45.5 N
|
strong |
| 2 mm |
2558 Gs
255.8 mT
|
3.30 kg / 7.27 lbs
3298.0 g / 32.4 N
|
strong |
| 3 mm |
2120 Gs
212.0 mT
|
2.26 kg / 4.99 lbs
2264.8 g / 22.2 N
|
strong |
| 5 mm |
1433 Gs
143.3 mT
|
1.03 kg / 2.28 lbs
1034.5 g / 10.1 N
|
safe |
| 10 mm |
574 Gs
57.4 mT
|
0.17 kg / 0.37 lbs
166.1 g / 1.6 N
|
safe |
| 15 mm |
267 Gs
26.7 mT
|
0.04 kg / 0.08 lbs
35.9 g / 0.4 N
|
safe |
| 20 mm |
141 Gs
14.1 mT
|
0.01 kg / 0.02 lbs
10.1 g / 0.1 N
|
safe |
| 30 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
safe |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
Table 2: Vertical force (wall)
MPL 20x10x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.23 kg / 2.71 lbs
1230.0 g / 12.1 N
|
| 1 mm | Stal (~0.2) |
0.93 kg / 2.05 lbs
928.0 g / 9.1 N
|
| 2 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
660.0 g / 6.5 N
|
| 3 mm | Stal (~0.2) |
0.45 kg / 1.00 lbs
452.0 g / 4.4 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.45 lbs
206.0 g / 2.0 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MPL 20x10x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.85 kg / 4.07 lbs
1845.0 g / 18.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.23 kg / 2.71 lbs
1230.0 g / 12.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.62 kg / 1.36 lbs
615.0 g / 6.0 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
3.08 kg / 6.78 lbs
3075.0 g / 30.2 N
|
Table 4: Material efficiency (saturation) - power losses
MPL 20x10x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.62 kg / 1.36 lbs
615.0 g / 6.0 N
|
| 1 mm |
|
1.54 kg / 3.39 lbs
1537.5 g / 15.1 N
|
| 2 mm |
|
3.08 kg / 6.78 lbs
3075.0 g / 30.2 N
|
| 3 mm |
|
4.61 kg / 10.17 lbs
4612.5 g / 45.2 N
|
| 5 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
| 10 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
| 11 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
| 12 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
Table 5: Working in heat (stability) - power drop
MPL 20x10x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
OK |
| 40 °C | -2.2% |
6.01 kg / 13.26 lbs
6014.7 g / 59.0 N
|
OK |
| 60 °C | -4.4% |
5.88 kg / 12.96 lbs
5879.4 g / 57.7 N
|
|
| 80 °C | -6.6% |
5.74 kg / 12.66 lbs
5744.1 g / 56.3 N
|
|
| 100 °C | -28.8% |
4.38 kg / 9.65 lbs
4378.8 g / 43.0 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MPL 20x10x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
15.04 kg / 33.17 lbs
4 923 Gs
|
2.26 kg / 4.98 lbs
2257 g / 22.1 N
|
N/A |
| 1 mm |
13.20 kg / 29.11 lbs
6 544 Gs
|
1.98 kg / 4.37 lbs
1980 g / 19.4 N
|
11.88 kg / 26.19 lbs
~0 Gs
|
| 2 mm |
11.36 kg / 25.03 lbs
6 069 Gs
|
1.70 kg / 3.76 lbs
1703 g / 16.7 N
|
10.22 kg / 22.53 lbs
~0 Gs
|
| 3 mm |
9.63 kg / 21.22 lbs
5 588 Gs
|
1.44 kg / 3.18 lbs
1444 g / 14.2 N
|
8.66 kg / 19.10 lbs
~0 Gs
|
| 5 mm |
6.71 kg / 14.78 lbs
4 664 Gs
|
1.01 kg / 2.22 lbs
1006 g / 9.9 N
|
6.03 kg / 13.30 lbs
~0 Gs
|
| 10 mm |
2.53 kg / 5.58 lbs
2 865 Gs
|
0.38 kg / 0.84 lbs
380 g / 3.7 N
|
2.28 kg / 5.02 lbs
~0 Gs
|
| 20 mm |
0.41 kg / 0.90 lbs
1 148 Gs
|
0.06 kg / 0.13 lbs
61 g / 0.6 N
|
0.37 kg / 0.81 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
165 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
104 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
69 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
26 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - precautionary measures
MPL 20x10x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 7.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 6.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 4.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.5 cm |
| Car key | 50 Gs (5.0 mT) | 3.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Impact energy (cracking risk) - warning
MPL 20x10x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
29.36 km/h
(8.16 m/s)
|
0.25 J | |
| 30 mm |
50.03 km/h
(13.90 m/s)
|
0.72 J | |
| 50 mm |
64.58 km/h
(17.94 m/s)
|
1.21 J | |
| 100 mm |
91.32 km/h
(25.37 m/s)
|
2.41 J |
Table 9: Corrosion resistance
MPL 20x10x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MPL 20x10x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 7 031 Mx | 70.3 µWb |
| Pc Coefficient | 0.42 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 20x10x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 6.15 kg | Standard |
| Water (riverbed) |
7.04 kg
(+0.89 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical wall, the magnet holds just a fraction of its nominal pull.
2. Steel thickness impact
*Thin steel (e.g. 0.5mm PC case) drastically reduces the holding force.
3. Temperature resistance
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.42
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Advantages and disadvantages of Nd2Fe14B magnets.
Pros
- They retain full power for around ten years – the drop is just ~1% (according to analyses),
- Magnets effectively resist against demagnetization caused by external fields,
- By applying a smooth coating of silver, the element presents an modern look,
- They are known for high magnetic induction at the operating surface, which increases their power,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Possibility of exact creating and optimizing to precise applications,
- Fundamental importance in high-tech industry – they are utilized in hard drives, electromotive mechanisms, precision medical tools, as well as complex engineering applications.
- Thanks to concentrated force, small magnets offer high operating force, in miniature format,
Disadvantages
- At strong impacts they can break, therefore we advise placing them in strong housings. A metal housing provides additional protection against damage and increases the magnet's durability.
- We warn that neodymium magnets can reduce their power at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- Magnets exposed to a humid environment can rust. Therefore during using outdoors, we suggest using waterproof magnets made of rubber, plastic or other material resistant to moisture
- We suggest cover - magnetic holder, due to difficulties in producing nuts inside the magnet and complex shapes.
- Potential hazard to health – tiny shards of magnets are risky, if swallowed, which becomes key in the context of child health protection. It is also worth noting that small components of these magnets can be problematic in diagnostics medical in case of swallowing.
- High unit price – neodymium magnets cost more than other types of magnets (e.g. ferrite), which hinders application in large quantities
Holding force characteristics
Highest magnetic holding force – what contributes to it?
- with the use of a yoke made of low-carbon steel, guaranteeing full magnetic saturation
- whose thickness equals approx. 10 mm
- characterized by smoothness
- under conditions of no distance (surface-to-surface)
- under axial force vector (90-degree angle)
- at standard ambient temperature
Key elements affecting lifting force
- Gap (between the magnet and the plate), as even a tiny clearance (e.g. 0.5 mm) leads to a decrease in lifting capacity by up to 50% (this also applies to paint, corrosion or debris).
- Force direction – catalog parameter refers to pulling vertically. When slipping, the magnet exhibits much less (typically approx. 20-30% of maximum force).
- Plate thickness – insufficiently thick sheet causes magnetic saturation, causing part of the power to be wasted into the air.
- Material composition – different alloys attracts identically. Alloy additives weaken the interaction with the magnet.
- Plate texture – smooth surfaces ensure maximum contact, which increases force. Uneven metal reduce efficiency.
- Thermal factor – high temperature reduces pulling force. Exceeding the limit temperature can permanently damage the magnet.
Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under parallel forces the load capacity is reduced by as much as fivefold. In addition, even a slight gap between the magnet’s surface and the plate reduces the load capacity.
Warnings
Do not drill into magnets
Fire warning: Rare earth powder is explosive. Avoid machining magnets in home conditions as this may cause fire.
Life threat
Warning for patients: Strong magnetic fields disrupt electronics. Keep minimum 30 cm distance or ask another person to work with the magnets.
Heat sensitivity
Do not overheat. NdFeB magnets are susceptible to heat. If you need resistance above 80°C, inquire about special high-temperature series (H, SH, UH).
Respect the power
Before starting, read the rules. Uncontrolled attraction can destroy the magnet or hurt your hand. Be predictive.
Choking Hazard
These products are not intended for children. Swallowing a few magnets may result in them pinching intestinal walls, which poses a direct threat to life and necessitates urgent medical intervention.
Sensitization to coating
Some people experience a contact allergy to nickel, which is the typical protective layer for NdFeB magnets. Extended handling might lead to a rash. We suggest wear safety gloves.
Beware of splinters
Despite the nickel coating, neodymium is brittle and cannot withstand shocks. Do not hit, as the magnet may crumble into sharp, dangerous pieces.
Phone sensors
GPS units and smartphones are highly susceptible to magnetism. Close proximity with a strong magnet can permanently damage the internal compass in your phone.
Electronic hazard
Do not bring magnets close to a wallet, computer, or screen. The magnetic field can destroy these devices and wipe information from cards.
Crushing risk
Watch your fingers. Two large magnets will snap together immediately with a force of several hundred kilograms, crushing everything in their path. Exercise extreme caution!
