MPL 20x10x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020128
GTIN: 5906301811343
length [±0,1 mm]
20 mm
Width [±0,1 mm]
10 mm
Height [±0,1 mm]
5 mm
Weight
7.5 g
Magnetization Direction
↑ axial
Load capacity
5.58 kg / 54.72 N
Magnetic Induction
349.47 mT
Coating
[NiCuNi] nickel
4.54 ZŁ with VAT / pcs + price for transport
3.69 ZŁ net + 23% VAT / pcs
3.15 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Not sure what to buy?
Contact us by phone
+48 888 99 98 98
otherwise contact us by means of
our online form
the contact form page.
Specifications along with shape of magnetic components can be estimated using our
magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
MPL 20x10x5 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (based on calculations),
- They are very resistant to demagnetization caused by external magnetic sources,
- By applying a bright layer of nickel, the element gains a sleek look,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which increases their application range,
- Significant impact in new technology industries – they serve a purpose in data storage devices, electric drives, healthcare devices along with other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall durability,
- They lose strength at high temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
- Potential hazard due to small fragments may arise, in case of ingestion, which is crucial in the family environments. It should also be noted that small elements from these products may hinder health screening after being swallowed,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Maximum magnetic pulling force – what contributes to it?
The given holding capacity of the magnet corresponds to the highest holding force, determined under optimal conditions, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Lifting capacity in practice – influencing factors
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Precautions
Keep neodymium magnets away from the wallet, computer, and TV.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnetic are noted for their fragility, which can cause them to crumble.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
It is important to keep neodymium magnets out of reach from children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
If you have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.
Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Pay attention!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
