e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. All "magnets" on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase very strong magnet? Magnet holders in solid and airtight enclosure are perfect for use in variable and difficult climate conditions, including during snow and rain see more...

magnetic holders

Magnetic holders can be applied to facilitate production processes, underwater discoveries, or searching for meteorites made of ore see more...

Enjoy delivery of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships tomorrow

SM 18x300 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130277

GTIN: 5906301812791

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

300 mm

Weight

0.01 g

664.20 with VAT / pcs + price for transport

540.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
540.00 ZŁ
664.20 ZŁ
price from 5 pcs
513.00 ZŁ
630.99 ZŁ
price from 10 pcs
486.00 ZŁ
597.78 ZŁ

Hunting for a discount?

Call us now +48 888 99 98 98 otherwise let us know using inquiry form the contact form page.
Force along with shape of a magnet can be calculated on our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 18x300 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x300 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130277
GTIN
5906301812791
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
300 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is the heart of every magnetic filter used in industry. It is used for cleaning bulk products (flour, sugar, granules) and liquids (oils, juices). High magnetic induction allows catching the finest iron particles.
The rod consists of a casing tube made of acid-resistant steel (AISI 304/316). Inside, there is a stack of strong neodymium magnets in a special configuration. Thanks to this, the rod is durable and hygienic.
Due to high power, direct removal of filings can be troublesome. We recommend taping the filings and peeling them off together. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The Gauss value tells us how effectively the magnet will catch small impurities. The economical version handles large metal pieces well. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
We can produce a rod with any mounting end. You can choose a mounting method compatible with your project. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong holding force, neodymium magnets have these key benefits:

  • They do not lose their power nearly 10 years – the decrease of strength is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is impressive,
  • Thanks to the shiny finish and nickel coating, they have an visually attractive appearance,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • The ability for custom shaping and customization to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Important function in advanced technical fields – they are used in computer drives, electric drives, healthcare devices along with other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to external force, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall resistance,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
  • Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
  • Health risk related to magnet particles may arise, especially if swallowed, which is notable in the family environments. Moreover, minuscule fragments from these magnets may complicate medical imaging when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given strength of the magnet means the optimal strength, determined under optimal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, however under parallel forces the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet and the plate decreases the load capacity.

Precautions

 Maintain neodymium magnets far from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.

If the joining of neodymium magnets is not controlled, then they may crumble and crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are especially delicate, resulting in damage.

Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Exercise caution!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98